I-V 특성 곡선의 2차 미분을 통해서 얻어지는 전자 에너지 분포 함수를 정확하게 구하기 위해서는 스무딩 과정이 반드시 필요하다. 대표적인 스무딩 방법으로 가우시안 확률 밀도 함수를 instrument함수로 이용하는 가우시안 스무딩이 있다. 본 연구에서는 시스템에 따라서 instrument함수가 다르다는 점에 착안하여, 여러 가지 다른 종류의 확률 밀도 함수를 instrument함수로 사용 스무딩에 적용하여 확률 밀도 함수에 따른 노이즈 제거 및 전자 에너지 분포 함수의 정확도를 비교하였고. 동시에 대표적인 범용 스무딩 방법인 사비츠키-골래이 스무딩, Polynomial fitting과도 그 결과를 비교 분석하였다.
본 논문에서는 동적 객체의 3 차원 정보를 표현하는 깊이 영상의 노이즈 필터링 방법을 제안한다. 실제 객체의 동적인 3 차원 정보는 적외선 깊이 센서가 장착된 깊이 비디오 카메라를 이용하여 실시간으로 획득되며, 일련의 깊이 영상, 즉 깊이 비디오(depth video)로 표현될 수 있다. 하지만 측정환경의 조명조건, 객체의 반사속성, 카메라의 시스템 오차 등으로 인해 깊이 영상에는 고주파 성분의 노이즈가 발생하게 된다. 이를 효과적으로 제거하기 위해 깊이 영상기반의 모델링 기법(depth image-based modeling)을 이용한 3 차원 메쉬 모델링을 수행한다. 생성된 3 차원 메쉬 모델은 깊이 영상의 노이즈로 인해 경계 영역과 형상 내부 영역에 심각한 형상 오차를 가진다. 경계 영역의 오차를 제거하기 위해 깊이 영상으로부터 경계 영역을 추출하고, 가까운 순서로 정렬한 후 angular deviation 을 이용하여 불필요하게 중복된 점들을 제거한다. 그리고 나서 2 차원 가우시안 스무딩 기법을 적용하여 부드러운 경계영역을 생성한다. 형상 내부에 대해서는 경계영역에 제약조건을 주고 3 차원 가우시안 스무딩 기법을 적용하여 전체적으로 부드러운 형상을 생성한다. 최종적으로 스무딩된 3 차원 메쉬모델을 렌더링할 때, 깊이 버퍼에 있는 정규화된 깊이 값들을 추출하여 원래 깊이 영상과 동일한 깊이 영역을 가지도록 저장함으로서 전역적으로 연속적이면서 부드러운 깊이 영상을 생성할 수 있다. 제안된 방법에 의해 노이즈가 제거된 깊이 영상을 이용하여 고품질의 영상기반 렌더링이나 깊이 비디오 기반의 햅틱 렌더링에 적용할 수 있다.
HMM(Hidden Markov Model)을 이용한 어휘 인식에서 모델들의 대한 관측 확률이 이산적인 분포를 나타내며 계산량이 적은 장점이 있지만 인식률이 상대적으로 낮고 정교한 스무딩 과정이 필요한 단점이 있다. 이를 개선하기 위해 가우시안 믹스쳐 연속 확률 밀도를 이용한 CHMM(Continuous Hidden Markov Model) 모델 최적화를 위한 시스템을 제안한다. 본 논문의 시스템은 CHMM 어휘 인식에서 가우시안 믹스쳐 모델을 최적화한 인식 모델을 형상 형성 시스템 지원에 의해 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 98.1%의 인식률을 나타내었다.
최근 IoT 기술과 AI의 성능향상에 따라 폭넓은 분야에서 자동화와 무인화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상의 잡음 제거는 영상에 기반한 시스템에서 전처리 단계로 사용하는 중요한 과정으로 다양한 연구가 진행되었으나, 대부분의 경우 에지와 같은 고주파 성분에서 스무딩 효과에 의해 디테일한 정보를 보존하기 어렵다는 단점이 있다. 본 논문은 AWGN(additive white Gaussian noise)에 훼손된 영상을 가우시안 분포에 기반한 퍼지 가중치를 사용하여 복원하는 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.
본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.
본 논문에서는 GPU를 이용하여 x-ray영상의 질을 개선시키기 위해 라플라시안 피라미드 방법을 제시한다. 의료영상에서 중요시하는 특징의 추출을 위해 원영상을 다중레벨의 부영상으로 신호를 분해하며, 각 레벨에서 가우시안 스무딩 함수를 사용하여 영상의 대비를 확장시킨다. 분해된 영상을 기반으로 전체영상을 재구성하여 영상의 질을 향상시키게 된다. 이러한 과정은 많은 계산을 필요로하며, 효과적이고 바른 처리를 위해 GPU를 사용한다., 결과에서 GPU를 이용한 cuda 프로그램이 효과적으로 동작하며, 영상의 질을 향상시킴을 보인다.
본 논문에서는 음성향상을 위하여 환경잡음분류를 적용한 향상된 음성부재확률 추정방법을 제안한다. 기존의 음성부재확률 추정방법에서는 마이크로폰 입력신호와 추정된 잡음신호 기반의 a posteriori SNR값에 문턱값을 적용하여 음성부재확률을 구하는데 필요한 음성부재의 a priori 확률을 도출하였다. 본 논문에서 제안된 알고리즘은 보다 효과적인 음성부재확률 추정을 위하여 고정된 문턱값과 스무딩 (smoothing)파라미터를 사용하는 기존의 방법과는 달리 잡음분류 알고리즘인 가우시안 혼합 모델 (Gaussian mixture model)을 사용하여 잡음마다 최적화된 파라미터를 적용한다. 제안된 음성 향상 기법은 ITU-T P.862 PESQ (perceptual evaluation of speech quality)와 composite measure를 이용하여 다양한 환경에서 평가하였으며, 제안된 알고리즘이 기존의 음성부재확률 추정방법보다 향상된 결과를 보였다.
본 논문은 널리 알려진 RGB 색상 기반의 웹캠을 사용한 손 영역을 효율적으로 분할하는 방법을 제안한다. 이 방법은 잡음을 제거하기 위하여 네 번의 경험적 전처리 방법을 수행한다. 먼저, 전체 영상 잡음을 제거하기 위하여 가우시안 평활화를 수행한다. 다음으로, RGB 영상은 HSV와 YCbCr 색상 모델로 변환되어, 각 색상 모델에 대해 통계적인 값에 기반하여 전역 고정 이진화가 수행된 후, 잡음은 bitwise-OR 연산에 의해 제거된다. 다음으로, 윤곽 근사화와 내부 영역 구멍 연산을 위해 RDP와 flood fill 알고리즘이 사용된다. 끝으로, 모폴로지 연산을 통하여 잡음을 제거하고 영상의 크기에 비례한 임계값을 결정하여 손 영역이 결정된다. 본 연구는 잡음 제거에 초점을 맞추고 있고 손 동작 인식 응용 기술에 사용될 수 있다.
이 논문에서 제시된 알고리즘은, 원 이미지에서 저주파를 성분을 덜어내어 얻은 성분과 원 이미지의 컴비네이션을 통해 대상 이미지를 좀 더 선명하게 하는 역할을 하도록 고안되었다. 여기에서 이미지의 저주파를 선택하기 위해 가우시안 스무딩 방법이 선택되었다. 또한 이미지의 전체적인 밝기를 유지하기 위하여 제시될 필터의 이득의 크기도 고려하였다. MATLAB으로 검증된 알고리즘을 바탕으로, 제안한 알고리즘을 통해 이전 보다 더 상세하고 선명한 이미지를 확인 할 수 있었다.
본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.