• 제목/요약/키워드: 가우시안 스무딩

검색결과 11건 처리시간 0.025초

전자 에너지 분포 함수 측정을 위한 I V특성 곡선의 확률 밀도 함수를 이용한 Smoothing method (The study of advanced numerical differentiation for obtaining the electron energy distribution function)

  • 장성호;정진욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2082-2084
    • /
    • 2005
  • I-V 특성 곡선의 2차 미분을 통해서 얻어지는 전자 에너지 분포 함수를 정확하게 구하기 위해서는 스무딩 과정이 반드시 필요하다. 대표적인 스무딩 방법으로 가우시안 확률 밀도 함수를 instrument함수로 이용하는 가우시안 스무딩이 있다. 본 연구에서는 시스템에 따라서 instrument함수가 다르다는 점에 착안하여, 여러 가지 다른 종류의 확률 밀도 함수를 instrument함수로 사용 스무딩에 적용하여 확률 밀도 함수에 따른 노이즈 제거 및 전자 에너지 분포 함수의 정확도를 비교하였고. 동시에 대표적인 범용 스무딩 방법인 사비츠키-골래이 스무딩, Polynomial fitting과도 그 결과를 비교 분석하였다.

  • PDF

형상 스무딩과 Z-buffer 렌더링을 이용한 깊이 영상의 노이즈 필터링 (Noise filtering for Depth Images using Shape Smoothing and Z-buffer Rendering)

  • 김승만;박정철;조지호;이관행
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1188-1193
    • /
    • 2006
  • 본 논문에서는 동적 객체의 3 차원 정보를 표현하는 깊이 영상의 노이즈 필터링 방법을 제안한다. 실제 객체의 동적인 3 차원 정보는 적외선 깊이 센서가 장착된 깊이 비디오 카메라를 이용하여 실시간으로 획득되며, 일련의 깊이 영상, 즉 깊이 비디오(depth video)로 표현될 수 있다. 하지만 측정환경의 조명조건, 객체의 반사속성, 카메라의 시스템 오차 등으로 인해 깊이 영상에는 고주파 성분의 노이즈가 발생하게 된다. 이를 효과적으로 제거하기 위해 깊이 영상기반의 모델링 기법(depth image-based modeling)을 이용한 3 차원 메쉬 모델링을 수행한다. 생성된 3 차원 메쉬 모델은 깊이 영상의 노이즈로 인해 경계 영역과 형상 내부 영역에 심각한 형상 오차를 가진다. 경계 영역의 오차를 제거하기 위해 깊이 영상으로부터 경계 영역을 추출하고, 가까운 순서로 정렬한 후 angular deviation 을 이용하여 불필요하게 중복된 점들을 제거한다. 그리고 나서 2 차원 가우시안 스무딩 기법을 적용하여 부드러운 경계영역을 생성한다. 형상 내부에 대해서는 경계영역에 제약조건을 주고 3 차원 가우시안 스무딩 기법을 적용하여 전체적으로 부드러운 형상을 생성한다. 최종적으로 스무딩된 3 차원 메쉬모델을 렌더링할 때, 깊이 버퍼에 있는 정규화된 깊이 값들을 추출하여 원래 깊이 영상과 동일한 깊이 영역을 가지도록 저장함으로서 전역적으로 연속적이면서 부드러운 깊이 영상을 생성할 수 있다. 제안된 방법에 의해 노이즈가 제거된 깊이 영상을 이용하여 고품질의 영상기반 렌더링이나 깊이 비디오 기반의 햅틱 렌더링에 적용할 수 있다.

  • PDF

CHMM 어휘 인식에서 형상 형성 제어를 이용한 가우시안 모델 최적화 (Gaussian Model Optimization using Configuration Thread Control In CHMM Vocabulary Recognition)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권7호
    • /
    • pp.167-172
    • /
    • 2012
  • HMM(Hidden Markov Model)을 이용한 어휘 인식에서 모델들의 대한 관측 확률이 이산적인 분포를 나타내며 계산량이 적은 장점이 있지만 인식률이 상대적으로 낮고 정교한 스무딩 과정이 필요한 단점이 있다. 이를 개선하기 위해 가우시안 믹스쳐 연속 확률 밀도를 이용한 CHMM(Continuous Hidden Markov Model) 모델 최적화를 위한 시스템을 제안한다. 본 논문의 시스템은 CHMM 어휘 인식에서 가우시안 믹스쳐 모델을 최적화한 인식 모델을 형상 형성 시스템 지원에 의해 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 98.1%의 인식률을 나타내었다.

AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘 (Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment)

  • 천봉원;김남호
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.207-213
    • /
    • 2022
  • 최근 IoT 기술과 AI의 성능향상에 따라 폭넓은 분야에서 자동화와 무인화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상의 잡음 제거는 영상에 기반한 시스템에서 전처리 단계로 사용하는 중요한 과정으로 다양한 연구가 진행되었으나, 대부분의 경우 에지와 같은 고주파 성분에서 스무딩 효과에 의해 디테일한 정보를 보존하기 어렵다는 단점이 있다. 본 논문은 AWGN(additive white Gaussian noise)에 훼손된 영상을 가우시안 분포에 기반한 퍼지 가중치를 사용하여 복원하는 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.

얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거 (Efficient Facial Blemishes Removal with Face Feature Detection)

  • 박호준;차의영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF

GPU를 이용한 의료영상의 라플라시안 피라미드 방법에 관한 연구 (Study on the Laplacian pyramid method of medical image using GPU)

  • 김재혁;이준동;양길모;김동호;김순석;이강우;이용희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1491-1493
    • /
    • 2015
  • 본 논문에서는 GPU를 이용하여 x-ray영상의 질을 개선시키기 위해 라플라시안 피라미드 방법을 제시한다. 의료영상에서 중요시하는 특징의 추출을 위해 원영상을 다중레벨의 부영상으로 신호를 분해하며, 각 레벨에서 가우시안 스무딩 함수를 사용하여 영상의 대비를 확장시킨다. 분해된 영상을 기반으로 전체영상을 재구성하여 영상의 질을 향상시키게 된다. 이러한 과정은 많은 계산을 필요로하며, 효과적이고 바른 처리를 위해 GPU를 사용한다., 결과에서 GPU를 이용한 cuda 프로그램이 효과적으로 동작하며, 영상의 질을 향상시킴을 보인다.

환경잡음분류 기반의 향상된 음성부재확률 추정 (An Improved Speech Absence Probability Estimation based on Environmental Noise Classification)

  • 손영호;박윤식;안홍섭;이상민
    • 한국음향학회지
    • /
    • 제30권7호
    • /
    • pp.383-389
    • /
    • 2011
  • 본 논문에서는 음성향상을 위하여 환경잡음분류를 적용한 향상된 음성부재확률 추정방법을 제안한다. 기존의 음성부재확률 추정방법에서는 마이크로폰 입력신호와 추정된 잡음신호 기반의 a posteriori SNR값에 문턱값을 적용하여 음성부재확률을 구하는데 필요한 음성부재의 a priori 확률을 도출하였다. 본 논문에서 제안된 알고리즘은 보다 효과적인 음성부재확률 추정을 위하여 고정된 문턱값과 스무딩 (smoothing)파라미터를 사용하는 기존의 방법과는 달리 잡음분류 알고리즘인 가우시안 혼합 모델 (Gaussian mixture model)을 사용하여 잡음마다 최적화된 파라미터를 적용한다. 제안된 음성 향상 기법은 ITU-T P.862 PESQ (perceptual evaluation of speech quality)와 composite measure를 이용하여 다양한 환경에서 평가하였으며, 제안된 알고리즘이 기존의 음성부재확률 추정방법보다 향상된 결과를 보였다.

RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할 (Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image)

  • 양혁진;김동현;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1603-1613
    • /
    • 2017
  • 본 논문은 널리 알려진 RGB 색상 기반의 웹캠을 사용한 손 영역을 효율적으로 분할하는 방법을 제안한다. 이 방법은 잡음을 제거하기 위하여 네 번의 경험적 전처리 방법을 수행한다. 먼저, 전체 영상 잡음을 제거하기 위하여 가우시안 평활화를 수행한다. 다음으로, RGB 영상은 HSV와 YCbCr 색상 모델로 변환되어, 각 색상 모델에 대해 통계적인 값에 기반하여 전역 고정 이진화가 수행된 후, 잡음은 bitwise-OR 연산에 의해 제거된다. 다음으로, 윤곽 근사화와 내부 영역 구멍 연산을 위해 RDP와 flood fill 알고리즘이 사용된다. 끝으로, 모폴로지 연산을 통하여 잡음을 제거하고 영상의 크기에 비례한 임계값을 결정하여 손 영역이 결정된다. 본 연구는 잡음 제거에 초점을 맞추고 있고 손 동작 인식 응용 기술에 사용될 수 있다.

이미지 저주파 성분 덜어냄을 이용한 에지 강화 기법 (Edge-Enhancement Method by Subtracting Low Frequency Components of an Image)

  • 장원우;김주현;곽부동;박근우;강봉순
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2006년도 하계 학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2006
  • 이 논문에서 제시된 알고리즘은, 원 이미지에서 저주파를 성분을 덜어내어 얻은 성분과 원 이미지의 컴비네이션을 통해 대상 이미지를 좀 더 선명하게 하는 역할을 하도록 고안되었다. 여기에서 이미지의 저주파를 선택하기 위해 가우시안 스무딩 방법이 선택되었다. 또한 이미지의 전체적인 밝기를 유지하기 위하여 제시될 필터의 이득의 크기도 고려하였다. MATLAB으로 검증된 알고리즘을 바탕으로, 제안한 알고리즘을 통해 이전 보다 더 상세하고 선명한 이미지를 확인 할 수 있었다.

  • PDF

전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화 (Nonparametric clustering of functional time series electricity consumption data)

  • 김재희
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.149-160
    • /
    • 2019
  • 본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.