• Title/Summary/Keyword: 가우시안 분포도

Search Result 295, Processing Time 0.03 seconds

Performance Enhancement of Algorithms based on Error Distributions under Impulsive Noise (충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization has two components; $A_k$ for kernel function of error pairs and the other $B_k$ for kernel function of errors. In this paper, it is analyzed that the first component is to govern gathering close together error samples, and the other one $B_k$ is to conduct error-sample concentration on zero. Based upon this analysis, it is proposed to normalize $A_k$ and $B_k$ with power of inputs which are modified by kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under impulsive noise, their roles and efficiency of the proposed normalization method are verified.

Geostatistical Approach to Integrated Modeling of Iron Mine for Evaluation of Ore Body (철광산의 광체 평가를 위한 지구통계학적 복합 모델링)

  • Ahn, Taegyu;Oh, Seokhoon;Kim, Kiyeon;Suh, Baeksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.177-189
    • /
    • 2012
  • Evaluation of three-dimensional ore body modeling has been performed by applying the geostatistical integration technique to multiple geophysical (electrical resistivity, MT) and geological (borehole data, physical properties of core) information. It was available to analyze the resistivity range in borehole and other area through multiple geophysical data. A correlation between resistivity and density from physical properties test of core was also analyzed. In the case study results, the resistivity value of ore body is decreased contrast to increase of the density, which seems to be related to a reason that the ore body (magnetite) includes heavy conductive component (Fe) in itself. Based on the lab test of physical properties in iron mine region, various geophysical, geological and borehole data were used to provide ore body modeling, that is electrical resistivity, MT, physical properties data, borehole data and grade data obtained from borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, the SGS (sequential Gaussian simulation) method was applied to describe the varying non-homogeneity depending on region through the realization that maintains the mean and variance. With the geostatistical simulation results of geophysical, geological and grade data, the location of residual ore body and ore body which is previously reported was confirmed. In addition, another highly probable region of iron ore bodies was estimated deeper depth in study area through integrated modeling.

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground (연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

A Study on Breakdown Voltage of Double Gate MOSFET (DGMOSFET의 항복전압에 관한 연구)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.693-695
    • /
    • 2012
  • This paper have presented the breakdown voltage for double gate(DG) MOSFET. The analytical solution of Poisson's equation and Fulop's breakdown condition have been used to analyze for breakdown voltage. The double gate(DG) MOSFET as the device to be able to use until nano scale has the adventage to reduce the short channel effects. But we need the study for the breakdown voltage of DGMOSFET since the decrease of the breakdown voltage is unavoidable. To approximate with experimental values, we have used the Gaussian function as charge distribution for Poisson's equation, and the change of breakdown voltage has been observed for device geometry. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. As a result to observe the breakdown voltage, the smaller channel length and the higher doping concentration become, the smaller the breakdown voltage becomes. Also we have observed the change od the breakdown voltage for gate oxide thickness and channel thickness.

  • PDF

Error Correction Methode Improve System using Out-of Vocabulary Rejection (미등록어 거절을 이용한 오류 보정 방법 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2012
  • In the generated model for the recognition vocabulary, tri-phones which is not make preparations are produced. Therefore this model does not generate an initial estimate of parameter words, and the system can not configure the model appear as disadvantages. As a result, the sophistication of the Gaussian model is fall will degrade recognition. In this system, we propose the error correction system using out-of vocabulary rejection algorithm. When the systems are creating a vocabulary recognition model, recognition rates are improved to refuse the vocabulary which is not registered. In addition, this system is seized the lexical analysis and meaning using probability distributions, and this system deactivates the string before phoneme change was applied. System analysis determine the rate of error correction using phoneme similarity rate and reliability, system performance comparison as a result of error correction rate improve represent 2.8% by method using error patterns, fault patterns, meaning patterns.

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

Rain Detection and Removal Algorithm using Motion-Compensated Non-local Means Filter for Video Sequences (동영상을 위한 움직임 보상 기반 Non-Local Means 필터를 이용한 우적 검출 및 제거 알고리즘)

  • Seo, Seung Ji;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.153-163
    • /
    • 2015
  • This paper proposes a rain detection and removal algorithm that is robust against camera motion in video sequences. In detection part, the proposed algorithm initially detects possible rain streaks by using intensity properties and spatial properties. Then, the rain streak candidates are selected based on Gaussian distribution model. In removal part, a non-rain block matching algorithm is performed between adjacent frames to find similar blocks to the block that has rain pixels. If the similar blocks to the block are obtained, the rain region of the block is reconstructed by non-local means (NLM) filter using the similar neighbors. Experimental results show that the proposed algorithm outperforms the previous works in terms of subjective visual quality of de-rained video sequences.

Power Trace Selection Method in Template Profiling Phase for Improvements of Template Attack (프로파일링 단계에서 파형 선별을 통한 템플릿 공격의 성능 향상)

  • Jin, Sunghyun;Kim, Taewon;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Template attack is a powerful side-channel analysis technique which can be performed by an attacker who has a test device that is identical to target device. Template attack is consisted of building template in profiling phase and matching the target device using template that were calculated in profiling phase. One methods to improve the success rate of template attack is to better estimate template which is consisted sample mean and sample covariance matrix of gaussian distribution in template profiling. However restriction of power trace in profiling phase led to poor template estimation. In this paper, we propose new method to select noisy power trace in profiling phase. By eliminating noisy power trace in profiling phase, we can construct more advanced mean and covariance matrix which relates to better performance in template attack. We proved that the proposed method is valid through experiments.

A Fuzzy Neural Network Model Solving the Underutilization Problem (Underutilization 문제를 해결한 퍼지 신경회로망 모델)

  • 김용수;함창현;백용선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.354-358
    • /
    • 2001
  • This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.

  • PDF