• Title/Summary/Keyword: 가용화율

Search Result 36, Processing Time 0.026 seconds

Optimization of bio-$H_{2}$ production from acid pretreated microalgal biomass (미세조류로부터 바이오 수소 생산을 위한 산(acid) 전처리의 최적화)

  • Yun, Yeo-Myeong;Jung, Kyung-Won;Kim, Dong-Hoon;Oh, You-Kwan;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2012
  • In this study, dark fermentative hydrogen production (DFHP) from acid pretreated microalgal biomass was optimized with via statistical experimental design. Acid concentration and reaction time were varied from 0.1 to 3% (v/w) and 10 to 60 min with substrate concentration of 76 g dry cell weight (dcw)/L and initial pH of 7.4, respectively. During the fermentation, pH was not controlled. The optimal condition was found that at $H_{2}$ yield reached to 37.3 mL $H_{2}/g$ dcw at 1.2% HCl and 48 min. Through regression analysis, it was found that $H_{2}$ yield was well fitted by a quadratic polynomial equation ($R^{2}$=0.95). HCl concentration was the most significant factor influencing DFHP. The results of ANOVA verify that HCl concentration was the most significant factor influencing DFHP.

Sludge reduction by Enzyme Pretreatment (효소 전처리를 통한 슬러지 저감)

  • 김정래;심상준;최수형;염익태
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • We investigate the effect of enzyme pretreatment using protease, carbohydrase, and lipase on improvement of sludge treatment efficiency by measuring SCOD and TCOD. The enzyme-pretreatment increases SCOD of excess sludge. In addition, the amount of sludge reduction during digestion, in terms of SCOD and TCOD, are enhanced by enzyme-pretreatment. Among pretense, carbohydrase, and lipase, pretense showed the best enhancement of the sludge treatment efficiency. Sludge digestion followed by ozone and enzyme treatments showed more effective sludge treatment when compared with ozone treatment alone. Therefore, we expect that enzyme pretreatment can be used as a useful tool for enhancing the sludge treatment efficiency.

Estimation on ability of livestock manure digestion for upland crops (밭작물별 가축분 소화능 계량화 평가)

  • Hyun, Byung-Keun;Yun, Hong-Bae;Kwon, Soon-Ik;Jung, Kwang-Yong;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2001
  • Owing to raising number of livestock, we have a problem to solve disposal of livestock manure. We know that soil have the digestion ability of livestock manure as one of multifunctionality. I carried out to investigate of livestock manure digestion (especially pig and chicken manure) that is considered as nitrogen fertilizer in upland crops. The results were summarized as follows: 1. The amount of pig manure was(1999) 4,592,375 tons/year, and chicken manure was 4,488,166 tons/year and equivalent to 41,912 tons N/year and 76,223 tons N/year, respectively. 2. The definition of the digestion ability of livestock manure is as the maximum application amount of livestock manure without injuring soil and plant. And the calculation model of digestion ability of livestock manure(ALMD) is follows: ALMD = amount of nitrogen requirement per each upland crop / {(total nitrogen contents in livestock manure) ${\times}$ (nitrogen fertilizer efficiency of livestock manure)} 3. The amount of ability of pig and chicken manure for upland crops (dry based) were 1,142.9kg/10a and 540.1kg/10a, respectively. 4. The order of amount of digestion ability of livestock manure on upland were vegetables > orchards > miscellaneous grains(corn) > barley > potatoes > pulses > oil seeds & special crops ) fodder crops) mulberry.

  • PDF

Difference of Component Changes in Salt-Fermented Spring and Autumn Anchovy, Engraulis japonicus Sauce during Fermentation ($\cdot$가을 멸치액젓의 숙성 중 성분변화의 차이)

  • IM Yeong Sun;PARK Hee Yeol;CHOI Young Joon;CHO Young Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • To investigate difference of component changes in salt-fermented spring (SAS) and autumn (AAS) anchovy, Engraulis japonicus sauce during fermentation, various chemical properties were examined at $1.5\sim3$ months intervals during 18 months fermentation, The contents of total and amino nitrogen were higher in SAS than in AAS until 15.7 and 17.4 months fermentation, respectively, but there were no difference after that. The cross point of inosine (HxR) + hypoxanthine (Hx) and uric acid was faster in SAS with 10.6 months fermentation than in AAS with 11.5 months fermentation, After 18 months of fermentation, the SAS was rich in free amino acids, such as glutamic acid, alanine, aspartic acid, valine, lysine in that order, On the other hand, the AAS was rich in free amino acids, such as glutamic acid, leucine, alanine, lysine, isoleucine in that order. Absorbance at 453 nm were higher in SAS than in AAS, and increased gradually during fermentation.

  • PDF

Difference of Components Changes in Salt-Fermented Anchovy, Engraulis japonicus Sauce by Tank Size during Fermentation (숙성 발효조크기에 따른 멸치액젓의 성분비교)

  • Lim Yeong Seon;You Byeong Jin;Choi Young Joon;Cho Young Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.302-307
    • /
    • 2002
  • To investigate difference of components changes in salt-fermented anchovy, Engaulis japonicus sauce during 18 months fermentation by tank size, various chemical properties were examined at 2$\~$3 months intervals. The contents of total and amino nitrogen, total ATP related compounds increased gradually during 18 months of fermentation, and showed higher content in salt-fermented anchor sauce produced by large tank scale (LTS) product than those of small tank scale (STS) product during fermentation. Hypoxanthine and uric acid were the most abundant in ATP related compounds, ranging from $81.1\%$ to $90.4\%$, The cross point of inosine (HxR) + hypoxanthine (Hx) and uric acid was faster in LTS with 10.3 months fermentation than in STS with 12.6 months fermentation. After 18month of fermentation, the LTS was rich in free amino acids, such as glutamic acid, alanine, aspartic acid, valine, Iysine in that order. On the other hand, the STS was rich in free amino acids, glutamic acid, aspartic acid, alanine, vsine, valine in that order. Absorbance at 453 nm were higher in STS than in STS, but was no difference the rate of increase during fermentation.

Changes of Components in Salt-fermented Northern Sand Lance, Ammodytes personatus Sauce during Fermentation (숙성기간에 따른 까나리액젓의 성분변화)

  • CHO Young Je;IM Yeong Sun;LEE Keun Woo;KIM Geon Bae;CHOI Yeung Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.693-698
    • /
    • 1999
  • To investigate changes of components in salt-fermented northern sand lance, Ammodytes personatus sauce during fermentation, various chemical properties were examined at 1$\~$3 months intervals during 18 months fermentation. The moisture content decreased slightly, but the content of VBN and crude protein, total nitrogen, amino nitrogen, degree of hydrolysis, and absorbance at 453 nm increased gradually during fermentation. On the other hand, ash content, pH, and salinity showed almost no change. The contents of total nitrogen, amino nitrogen, and degree of hydrolysis increased sharply until 6$\~$8 months fermentation and showed the gentle increment after that, The Hx and uric acid were the most abundant in ATP related compounds, ranging from $83.1\%$ to $92.9\%$, After 18 month of fermentation, sauce was rich in free amino acids, such as glutamic acid, alanine, Iysine, leucine, isoleucine, valine, aspartic acid in that order.

  • PDF