• Title/Summary/Keyword: 가열 속도

Search Result 570, Processing Time 0.027 seconds

혼미 속의 훈련기 시장

  • Jo, Geon-Hyeon
    • Defense and Technology
    • /
    • no.1 s.203
    • /
    • pp.62-71
    • /
    • 1996
  • 군용 훈련기 시장은 항공시간의 경쟁으로 인한 과잉생산과 세계각국에서 공군의 신형 훈련기 구매완료로 구매가 줄어들어, 시장규모가 압박을 받고 있으며, 구 공산국가 블럭 즉 동유럽 국가를 비롯해 중국 및 러시아가 매우 저렴한 가격을 제시해 훈련기 시장에서의 경쟁이 더욱 가열되고 있는 현실이다. 이에 혼미속으로 빠져드는 세계 훈련기 시장을 조명해 보았다.

  • PDF

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.

Kinetic Study on the Color Deterioration of Crude Anthocyanin Extract from Schizandra Fruit (Schizandra chinensis fructus) (오미자 색소 추출물의 가열 변색에 대한 속도론적 연구)

  • Cho, Sung-Bin;Kim, Hyun-Jung;Yoon, Jong-Il;Chun, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • The effects of temperature and pH on color deterioration of anthocyanin in Schizandra fruit (Schizandra chinensis fructus) were determined with temperature range of $80{\sim}100^{\circ}C$ and pH range of $2.0{\sim}5.0$. Browning index was used as an index of color deterioration of crude anthocyanin extract from Schizandra fruit. As pH of crude anthocyanin extract was increased, color deterioration was accelerated, showing pH-dependency of thermal stability of anthocyanin extract from Schizandra fruit. Anthocyanin degradation could be modeled as a second-order rate reaction, with rate of $3.2{\times}10^{-3}\;h^{-1}\;(pH\;2.0){\sim}4.1{\times}10^{-3}\;h^{-1}\;(pH\;5.0)\;at\;100^{\circ}C$. Temperature dependence of deterioration was described by the Arrhenius relationship. Activation energies for pH $2.0{\sim}5.0$ ranged from $24.87{\sim}42.54\;kJ/mol^{-1}$.

Effects of Phosphatidylcholine and Phosphatidylethanolamine from Egg Yolk on Thermal Oxidation of Canola Oil (달걀 노른자에서 분리한 포스파티딜콜린과 포스파티딜에탄올아민이 카놀라유의 가열산화에 미치는 영향)

  • Kim, Kang-Hyun;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.611-620
    • /
    • 2008
  • The principal objective of this study was to assess the effects of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) extracted from egg yolk on the oxidation of tocopherol-stripped canola oil and its browning, as well as their content changes during 12 hr of heating at $180^{\circ}C$. PC and/ or PE contents in the oil were measured at 200, 500, 1,000, or 2,000 ppm. PL contents in the oil and oil browning were determined by high performance liquid chromatography (HPLC) and spectrophotometry, respectively. The oil oxidation was evaluated by the combination of fatty acid composition, conjugated dienoic acid content, and p-anisidine value. PC was degraded at a slower rate than PE during heating and the co-presence of PE reduced its rate of degradation. PE increased oil browning more profoundly than PC did. PC significantly reduced oil oxidation during heating; however, we noted a possible antagonism between PE and PC in reducing the oil oxidation. Egg yolk PC was a better antioxidant in oil oxidation during heating.

Gelatinization Properties of Starch Dough with Moisture Content, Heating Temperature and Heating Time (수분함량, 가열온도 및 가열시간에 따른 전분 반죽의 호화특성)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.428-438
    • /
    • 1995
  • The gelatinization properties of corn and waxy corn starch doughs were examined at various moisture contents, heating temperatures and heating times. The onset temperatures of gelatinization with 1% CMC using Brabender Amylograph were $64^{\circ}C$ for both corn and waxy corn starch. In the gelatinization properties using DSC, onset temperature$(T_o)$, maximum peak temperature$(T_p)$, completion temperature$(T_c)$ and enthalpy of the corn starch were $68.15^{\circ}C,\;74.01^{\circ}C,\;85.65^{\circ}C$ and $3.2\;cal/gram$ respectively. While those of the waxy corn starch were $68.24^{\circ}C,\;75.43^{\circ}C,\;93^{\circ}C$ and $4.2\;cal/gram$ respectively. In enzymatic analysis, when the moisture content increased from 36% to 52% and heating temperature from $60^{\circ}C$ to $100^{\circ}C$, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The regression equations of gelatinization degree (Y) of starch dough in the range of $36{\sim}52%$ moisture content $(X_1)\;60{\sim}100^{\circ}C$ heating temperature $(X_2)\;and\;0{\sim}2.0$ min heating time $(X_3)$ were examined using response surface analysis. The regression equation of corn starch dough was: $Y=28.659+8.638\;X_}+15.675\;X_2+7.770\;X_3-1.620\;{X_1}^2+10.790\;X_1X_2-4.220\;{X_2}^2+0.510\;X_1X_3+1.980\;X_2X_3-6.850\;{X_3}^2\;(R^2=0.9714)$ and that of waxy corn starch dough was: $Y=32.617+12.535\;X_1+20.470\;X_2+8.608\;X_3+4.093\;{X_1}^2+13.550\;X_1X_2-4.467\;{X_2}^2+1.560\;X_1X_3+2.160\;X_2X_3-9.527\;{X_3}^2$\;(R^2=0.9621)$. As the moisture content, heating temperature and heating time increased, the reaction rate constant(k) of gelatinization increased. The greatest reaction rate constant was observed at initial 0.5 min heating time of 1st gelatinization stage. At the heating temperature of $90^{\circ}C$, gelatinization of starch dough was completed almost in the initial 0.5 min heating time. The reaction rate constant of waxy corn starch dough was higher than that of corn starch dough under the same gelatinization conditions. At the 52% moisture content, the regression equation between reaction rate constant(k) and heating temperature(T) for corn starch dough was $log\;k=11.1140-4.1226{\times}10^3(1/T)$ (r=-0.9520) and that of waxy corn starch dough was $log\;k=10.1195-3.7090{\times}10^3(1/T)$ (r=-0.9064).

  • PDF

Experimental analysis of pultrusion process for phenolic foam composites (발포 복합재료 Pultrusion 공정의 실험적 해석)

  • Lee WooIl;Yun MyungSeok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.47-52
    • /
    • 2005
  • Pultrusion process of phenolic foam composite is investigated. Phenolic foam composites provide heat and flame resistance with less weight. When made into foam, a variety of properties can be obtained with different bubble size and number density. In this study, effect of process variables on the foaming characteristics of phenolic resin composites during pultrusion process has been studied experimentally. The process variables considered are the heating temperature and the pulling speed as well as the mass fraction of blowing agent. Experiments were performed using a laboratory scale pultrusion apparatus. Optimal process condition was found by observing the micro-morphology.

Design and utilitation of non-contact type crucible for high productive multicrystaline Si ingert growth process for the fabrication of dolar cell wafer (태양전지 기판용 고 생산성 다결정 Si 잉코트 제조를 위한 무접촉성 도가니의 설계 및 활용기술)

  • Moon, Byung-Moon;Kim, Bong-Whan;Shin, Je-Sik;Lee, Sang-Mokk
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.6-11
    • /
    • 2005
  • 본 고에서는 태양전지 모듈 원가의 60% 이상을 차지하는 실리콘 기판의 생산성을 향상시키고 그에 따라 제조단가를 저감시키기 위한 일환으로 최근 들어 일본과 프랑스를 중심으로 중점적으로 기술개발이 이루어지고 있는 EMCC법 (Electro Magnetic Continuous Casting)에 의한 다결정 실리콘 잉고트의 제조기술에 관하여 연구하였다. 특히, 태양전지급의 고순도 잉고트로 제조하기 위해 높은 용융점과 낮은 전기전도도를 갖는 실리콘의 용해 및 주조 공정이 수냉되는 cold crucible 내에서 이루어지게 됨에 따라 발생하는 종래의 EMCC법의 문제점을 해결하고자, 코일전류 및 도가니 구조 등이 Joule 가열 효과 및 pinch 효과에 미치는 영향을 체계적으로 조사하였다. 연구 결과 대용량의 전원장치나 별도의 2차 가열원을 사용하지 않고서도 실리콘 원료의 가열 및 용해 효율을 현격히 향상시키며 용탕의 전 구간에 걸쳐 전자기력을 용탕의 정수압보다 큰 상태로 유지할 수 있는 EMCC용 무접촉성 도가니의 설계기술 및 이를 활용하는 전자기연주공정기술을 확립하였으며, 그 결과 직경 5cm의 실리콘 잉고트를 1,5mm/min의 속도로 무접촉 조건에서 연속주조할 수 있었다.

  • PDF

Electric Fan Heater Design for Eco-Energy Saving (친환경 에너지 절감형 전기온풍기 기구설계)

  • Sul, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.474-479
    • /
    • 2016
  • As the Eco-energy is recently required, electrical energy is fast increased. Several induction heating methods are attractive for Eco-energy and energy saving. In this paper, electrical fan heater was designed and developed with new concept for energy saving by electromagnetic induction heating. Proposed system was composed of three module, blast part, induction heating part and power transformation part. Induction heating method was adapted for heating and the resonant inverter was used for increasing of the power transformation efficiency. Full-bridge resonant inverter was adopted to resonant inverter. This system was composed of induction heating part made with metal(SUS 40 series), and power transformation part made with rectifier module, filter module and resonant inverter. From these results, the proposed new electric heater could be saved the energy from faster increasing the temperature compared to commercial gas and other electric heater. This electrical fan heater is possible to be used in field of home, commercial and agricultural area for eco-energy saving heater.

Kinetics of Pyrolysis Degradation of Cured Phenol Resin (SC-1008) (I). (경화된 페놀 수지 (SC-1008)의 열분해 반응에 관한 연구(I).)

  • 김연철;강희철;예병한;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.137-144
    • /
    • 1996
  • The kinetic coefficients far decomposition of the cured phenol resin (SC-1008) using a modified Arrhenius relationship have been determined from thermogavimetric analyses (TGA). The kinetic parameters were determined by multiple heating rate technique developed by Freideman and Henderson. Weight loss (decomposition) and weight loss rate (decomposition rate)were measured and recorded for three heating rates; $5^{\circ}C$/min ,$10^{\circ}C$/min, and $20^{\circ}C$/min. Relatively good agreement was obtained between measured and calculated decomposition as a function of temperature. By separating the reaction, the reaction order and pre exponential factor become empirical parameters which provide a "best fit" of the data. However, this method yields an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is the desired result for kinetic parameters used in thermal models.al models.

  • PDF

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.