• Title/Summary/Keyword: 가열 성능

Search Result 398, Processing Time 0.027 seconds

Studies on the manufacture of canned 'Kimchi' (김치 통조림 제조(製造)에 관(關)한 연구(硏究))

  • Lee, C.Y.;Kim, H.S.;Kim, J.K.
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.33-38
    • /
    • 1968
  • In order to determine proper conditions for the manufacture of canned Kimchi, a heat resistant lactic acid bacteria, the most acid producable strain, was isolated and identified as Lactabacillus plantarum. D-value for the isolate was calculated at 3 from a thermal death curve made at $60^{\circ}C$. The effects of acidity of Kimchi and the amount in a can, and the ratios of solid-liquid, were investigated. The most suitable time for sterilization with a type of can was determined as 25.2 minutes at $85^{\circ}C$. However in the period of heat treatment the quality was badly affected and this fact made desirable introducing of a adequate preservative additives into the manufacture of canned Kimchi.

  • PDF

Substrate Effects on the Response of PZT Infrared Detectors (상이한 기판조건에 따른 PZT 적외선 감지소자의 성능 변화)

  • Go, Jong-Su;Gwak, Byeong-Man;Liu, Weiguo;Zhu, Weiguang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.428-435
    • /
    • 2002
  • Pyroelectric $Pb(Zr_{0.3}Ti_{0.7})O_3$ (PZT30/70) thin film IR detectors has been fabricated and characterised. The PZT30/70 thin film was deposited onto $Pt/Ti/Si_3N_4/SiO_2/Si$ substrate by the sol-gel process. Four different substrate conditions were studied for their effects on the pyroelectric responses of the IR detectors. The substrate conditions were the combinations of the Si etching and the Pt/Ti patterning. In the Si etched substrate, the $Si_3N_4/SiO_2$ composite layer was used as silicon etch-stop, and was used as the membrane to support the PZT pyroelectric film element as well. The measured pyroelectric current and voltage responses of detectors fabricated on the micro-machined thin $Si_3N_4/SiO_2$ membrane were two orders higher than those of the detectors on the bulk-silicon. For detectors on the membrane substrate, the Pt/Ti patterned detectors showed a 2-times higher pyroelectric response than that of not-patterned detectors. On the other hand, the pyroelectric response of the detectors on the not-etched Si substrate was almost the same, regardless of the Pt/Ti patterning. It was also found that the rise time strongly depended on the substrate thickness: the thicker the substrate was, the longer the rise-time.

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Development of 1MW Organic Rankine Cycle System (1 MW급 유기랭킨 사이클 시스템 개발)

  • 박흥수;조한창;이용국
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.318-326
    • /
    • 2001
  • To enhance thermal efficiency of thermal facility through recovery of low and medium temperature waste heat, 1 MW organic Rankine cycle system was designed and developed. The exhaust gases of 175$^{\circ}C$ at two 100 MW power plants in pohang steel works were selected as the representative of low and medium temperature waste heat in industrial process for the heat source of the organic Rankine cycle system. HCFC-123, a kind of harmless refrigerant, was chosen as the working fluid for Rankine cycle. The organic Rankine cycle system with selected exhaust gases and working fluid was designed and constructed. From the operation, it was confirmed that the organic Rankine cycle system is available for low and medium temperature waste heat recovery in industrial process. The optimum operating manuals, such as heat-up of hot water, turbine start-up, and the process of electric power generation, were derived. However, electric power generated was not 1 MW as designed but only 670 kW. It is due to deficiency of pump capacity for supply of HCFC-123. So it is necessary to increase the pump capacity or to decrease the pressure loss in pipe for more improved HCFC-123 supply.

  • PDF

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

Adsorption/Desorption Properties of ACF on Toluene and MEK with Operation Condition (공정 조건에 따른 톨루엔 및 MEK에 대한 ACF의 흡·탈착 특성)

  • Baek, Geun-Ho;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2898-2903
    • /
    • 2011
  • Adsorption/desorption characteristics of low concentration methylethylketone(MEK) and toluene vapors in beds packed with activated carbon fibers(ACF) was investigated. Performance of ACF adsorption was characterized by the equilibrium capacity, time to reach equilibrium and desorption efficiency. Experiments were carried out to define the effect of operation variables, such as feed concentration, flow rate, moisture content and bed height. The breakthrough time was shorten with the increase of temperature, flow rate and feed concentration. In addition, an increase of packed height of adsorbents lengthen the breakthrough time. The ACF loaded with MEK and toluene was satisfactorily regenerated by programed heating. It is observed that MEK is more easily removed than toluene at below temperature of $150^{\circ}C$.

Development of a Prototype of FEM Simulation Environment for Temperature Controller Design (온도 제어기 설계를 위한 유한 요소법을 이용한 시뮬레이션 환경 프로토타입 구현)

  • Jang, Yu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.696-702
    • /
    • 2010
  • In many industrial applications, it is very important to control the temperature of the controlled object to the target temperature as closely as possible. Although it is apparent that the great obstacles in controller design are time-delay of the thermal responses of the controlled object and the effect of thermal interference between neighboring heating zones, one more fundamental obstacle is a very large amount of time which is required during repeated experiments in controller design process. Therefore, a convenient simulation environment, which can represent thermal behavior accurately within appropriate time, is needed. In this paper, a prototype of 2D FEM (finite element method) heat transfer simulation environment using MATLAB is constructed to be usefully adopted into industrial applications with temperature controller design.

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF