• Title, Summary, Keyword: 가스하이드레이트

Search Result 298, Processing Time 0.033 seconds

Acoustic Characteristics of Gas-related Structures in the Upper Sedimentary Layer of the Ulleung Basin, East Sea (동해 울릉분지 퇴적층 상부에 존재하는 가스관련 퇴적구조의 음향 특성연구)

  • Park, Hyun-Tak;Yoo, Dong-Geun;Han, Hyuk-Soo;Lee, Jeong-Min;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.513-523
    • /
    • 2012
  • The upper sedimentary layer of the Ulleung Basin in the East Sea shows stacked mass-flow deposits such as slide/slump deposits in the upper slope, debris-flow deposits in the middle and lower slope, and turbidites in the basin plain. Shallow gases or gas hydrates are also reported in many area of the Ulleung Basin, which are very important in terms of marine resources, environmental changes, and geohazard. This paper aims at studying acoustic characteristics and distribution pattern of gas-related structures such as acoustic column, enhanced reflector, dome structure, pockmark, and gas seepage in the upper sedimentary layer, by analysing high-resolution chirp profiles. Acoustic column shows a transparent pillar shape in the sedimentary layer and mainly occurs in the basin plain. Enhanced reflector is characterized by an increased amplitude and laterally extended to several tens up kilometers. Dome structure is characterized by an upward convex feature at the seabed, and mainly occurs in the lower slope. The pockmark shows a small crater-like feature and usually occurs in the middle and lower slope. Gas seepage is commonly found in the middle slope of the southern Ulleung Basin. These gas-related structures seem to be mainly caused by gas migration and escape in the sedimentary layer. The distribution pattern of the gas-related structures indicates that formation of these structures in the Ulleung Basin is controlled not only by sedimentary facies in upper sedimentary layer but also by gas-solubility changes depending on water depth. Especially, it is interpreted that the chaotic and discontinuous sedimentary structures of debris-flow deposits cause the facilitation of gas migration, whereas the continuous sedimentary layers of turbidites restrict the vertical migration of gases.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

Effects of Surfactant on SF6 Gas Hydrate Formation Rate (가스 하이드레이트 형성 원리를 이용한 SF6 처리 기술에 관한 연구)

  • Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Shin-Ho;Lee, Ju-Dong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.73-76
    • /
    • 2008
  • [ $SF_6$ ] gas has been widely used as an insulating, cleaning and covering gas due to its outstanding insulating feature and because of its inert properties. However, the global warming potential of $SF_6$ gas is extremely high relative to typical global warming gases such as $CO_2$, CFCs, and $CH_4$. For these reasons, it is necessary to separate and collect waste $SF_6$ gas. In this study, the effects of a surfactant (Tween) on the formation rate of $SF_6$ gas hydrates were investigated. The $SF_6$ gas hydrate formation rate increased with the addition of Tween and showed a nearly 6.5 times faster hydrate formation rate with an addition of 0.2 wt.% Tween compared to an addition of pure water. This is believed to be due to the increased solubility of $SF_6$ gas with the addition of the surfactant. It was also found that $SF_6$ gas hydrate in the surfactant solution showed two-stage hydrate formation rates with a formation rate that increased rapidly in the 2nd stage.

Characteristics of Coagulation Treatment for Wood Tar Waste Water in a Biomass Gasification Plant (바이오매스 가스화 발전설비의 목질계 타르폐수 응집 처리 특성)

  • Kim, I tae;Ahn, Kwangho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.573-577
    • /
    • 2015
  • There are difficulties in removing wood tar wastewater coming from the power plants that use wood-based fuels due to its intermittent occurrences and severe changes in the amount and concentration. This study investigated the treatment characteristics through physicochemical treatment, an improved method from the existing ones using bag filters and activated carbons to treat wood tar wastewater. In the case of chemical properties of wood tar wastewater, the content of phenols was found to be more than two times higher than that of guaiacols and carbohydrates. Installation is done to ensure that NaOH and PAC are injected automatically according to the change of pH, and then pH, turbidity and SS of the final treated water were examined. The results were 5.9, 12.6 NTU and 15.1 mg/L respectively, which confirmed the possibility of the treated water as circulation water of power plants. In the physical treatment process using a conventional bag filter, removal efficiency of chemicals was about 20%, but the treatment efficiency was improved to show chemical removal efficiency of about 80% through flocculation and sedimentation.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Trace Interpolation using Model-constrained Minimum Weighted Norm Interpolation (모델 제약조건이 적용된 MWNI (Minimum Weighted Norm Interpolation)를 이용한 트레이스 내삽)

  • Choi, Jihyun;Song, Youngseok;Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee;Kim, Kiyoung;Lee, Jeongmo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.78-87
    • /
    • 2017
  • For efficient data processing, trace interpolation and regularization techniques should be antecedently applied to the seismic data which were irregularly sampled with missing traces. Among many interpolation techniques, MWNI (Minimum Weighted Norm Interpolation) technique is one of the most versatile techniques and widely used to regularize seismic data because of easy extension to the high-order module and low computational cost. However, since it is difficult to interpolate spatially aliased data using this technique, model-constrained MWNI was suggested to compensate for this problem. In this paper, conventional MWNI and model-constrained MWNI modules have been developed in order to analyze their performance using synthetic data and validate the applicability to the field data. The result by using model-constrained MWNI was better in spatially aliased data. In order to verify the applicability to the field data, interpolation and regularization were performed for two field data sets, respectively. Firstly, the seismic data acquired in Ulleung Basin gas hydrate field was interpolated. Even though the data has very chaotic feature and complex structure due to the chimney, the developed module showed fairly good interpolation result. Secondly, very irregularly sampled and widely missing seismic data was regularized and the connectivity of events was quite improved. According to these experiments, we can confirm that the developed module can successfully interpolate and regularize the irregularly sampled field data.

Microbial Community Composition Associated with Anaerobic Oxidation of Methane in Gas Hydrate-Bearing Sediments in the Ulleung Basin, East Sea (동해 울릉분지 가스 하이드레이트 매장 지역의 메탄산화 미생물 군집 조성 및 분포)

  • Cho, Hyeyoun;Kim, Sung-Han;Shin, Kyung-Hoon;Bahk, Jang-Jun;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • To elucidate the microbial consortia responsible for the anaerobic methane oxidation in the methane hydrate bearing sediments, we compared the geochemical constituents of the sediment, the rate of sulfate reduction, and microbial biomass and diversity using an analysis of functional genes associated with the anaerobic methane oxidation and sulfate reduction between chimney site (UBGH2-3) on the continental slope and non-chimney site (UBGH2-10) on the basin of the Ulleung Basin. From the vertical profiles of geochemical constituents, sulfate and methane transition zone (SMTZ) was clearly defined between 0.5 and 1.5 mbsf (meters below seafloor) in the UBGH2-3, and between 6 and 7 mbsf at the UBGH2-10. At the UBGH2-3, the sulfate reduction rate (SRR) in the SMTZ exhibited was appeared to be $1.82nmol\;cm^{-3}d^{-1}$ at the depth of 1.15 mbsf. The SRR in the UBHG2-10 showed a highest value ($4.29nmol\;cm^{-3}d^{-1}$) at the SMTZ. The 16S rRNA gene copy numbers of total Prokaryotes, mcrA, (methyl coenzyme M reductase subunit A), and dsrA (dissimilatory sulfite reductase subunit A) showed the peaks in the SMTZ at both sites, but the maximum mcrA gene copy number of the UBGH2-10 appeared below the SMTZ (9.8 mbsf). ANME-1 was a predominant ANME (Anaerobic MEthanotroph) group in both SMTZs of the UBGH2-3 and -10. However, The sequences of ANME-2 were detected only at 2.2 mbsf of the UBGH2-3 where high methane flux was observed because of massive amount of gas hydrate at shallow depth. And Desulfosarcina-Desulfococcus (DSS) that is associated with ANME-2 was detected in 2.2 mbsf of the UBHG2-3. Overall results demonstrate that ANME-1 and ANME-2 are considered as significant archaeal groups related to methane cycle in the subsurface sediment of the East Sea, and ANME-2/DSS consortia might be more responsible for methane oxidation in the methane seeping region than in non-seeping region.