• Title/Summary/Keyword: 가스터빈 추진체계

Search Result 14, Processing Time 0.025 seconds

Development of CODOG Propulsion System Simulator (CODOG 함정 추진체계 시뮬레이터 개발)

  • Jang, Jae-hee;Shin, Seung-woo;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1808-1817
    • /
    • 2017
  • Duties required for naval ship such as anti-submarine, anti-ship, and supply, etc are diversified, so the ECS (Enfineering Control System) is required for executing the mission effectively. The ECS monitors and controls the propulsion system in order that naval ship can perform the mission. As the in-country development of ECS is progressed, a test system for ECS is needed, and a naval ship propulsion system simulator based on CODOG was developed on this study. The naval ship propulsion system simulator based on CODOG which is divided into gas turbine model, diesel engine model, reduction gear model and controllable pitch propeller model, simulates to feedback of control commands of ECS. As a result of the experiment, it is able to confirm speed, torque and power, etc. of the gas turbine, diesel engine and shaft according to ECS propulsion mode.

한국형 가스터빈 개발 및 추진 전략

  • Jo, Hyeong-Hui
    • Journal of the KSME
    • /
    • v.54 no.8
    • /
    • pp.32-36
    • /
    • 2014
  • 이 글에서는 대표적인 가스터빈 선진업체인 GE와 SIEMENS의 변천 사례를 통해서 국내 가스터빈 산업이 나아가야 할 방향과 이를 위한 산 학 연 관의 협력체계 구축 및 control tower의 필요성에 대하여 알아본다.

  • PDF

Techniques of Airbreathing Propulsion System Integration Using Small Gas Turbine Engine for Subsonic Cruise Missiles (소형 가스터빈 엔진의 유도탄 체계통합 기술)

  • Jang, Jongyoun;Kim, Joon;Jung, Jaewon;Lim, Jinshik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • An airbreathing propulsion system of a subsonic cruise missile is mainly composed of a small gas turbine engine, air intake and vehicle's fuel tank. The propulsion system integration work started from engine acceptance test is finally closed by ground functional test of the missile's propulsion section, after some modifications of engine's sub-components, development of engine-related onboard systems, interface analyses, and tests. The whole process and stepwise technologies of this system integration work are described herein.

Development of a Integrated Modifiable Micro Gas Turbine Engine Test Rig using LabVIEW (LabVIEW를 이용한 소형 가스터빈 엔진의 통합 시험장치 개발)

  • Kang, Young-Soo;Kim, Do-Hun;Lee, In-Chul;Yoon, Sang-Hoon;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.354-358
    • /
    • 2009
  • Micro gas turbine engine is well known as a power plant of unmanned aerial vehicle and a small scale emergency generation system and also, it is significant as initial research of large gas turbine and educational purpose of gas turbine. Many sort of Micro gas turbine test set for education is produced by several manufacturers, but all of the engine control system of them is separated with data acquisition system; moreover, the engine control algorithms are inaccessible and related variables could not be collected. In this investigation, the Integrated Modifiable Test Rig which has modifiable engine start-up, drive and situational control logics is developed by LabVIEW with I/O devices and it provides wide experimental applicability to studies of dynamic characteristics of fuel system and combustion instability.

  • PDF

Development of Naval Ship Propulsion System Simulator for CODLOG based ECS Verification (CODLOG 기반 ECS 검증용 함정 추진 시뮬레이터 개발)

  • Jang, Jae-hee;Kim, Dong-jin;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1796-1807
    • /
    • 2017
  • The domestic warship propulsion system is at the stage of a hybrid propulsion system changing from a mechanical propulsion system and the propulsion system becomes complicated so it is expected that the function of ECS(Engineering Control System) that controls and monitors the warship propulsion system becomes important. Recently the development of ECS has progressed domestically, so that verification of reliability and stability is required in the process of ECS development. The simulator to be proposed is composed of HILS, it can be divided into a shaft-line dynamics model of the simulating power transmission, a controller model of the simulating the control of the equipment, and a communication model communicating with the ECS. In this paper, we developed simulator for ECS verification for CODLOG hybrid propulsion system, set scenario, and conducted simulation.

Changes in Corrosion Rate of Gas Turbine Engines by the Korean Sea Area (우리나라 해역별 가스터빈엔진 부식률의 변화)

  • Oh, Kyungwon;Hur, Jangwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.137-138
    • /
    • 2017
  • The sea of the Korean peninsula has various marine changes, including naval vessels, naval operational aircrafts, air force fighters, coastal airports and airfields. In particular salt directly affected by the marine environment, equipment operating in a high temperature / high speed as the gas turbine is the high temperature corrosion(Hot Corrosion) caused by sulfur components and salinity of the fuel used. When the height of the demister (air intake) is less than 7m, the salinity entering the sea increases and the corrosion increases rapidly. In addition, the weapon systems operating in the East Sea than the West Sea showed a 17% increase in corrosion rate due to the relatively high salinity scattered by saline, wind, and wave. In order to minimize the salinity inflow, it should be operated at more than 13m from the sea to minimize rapid hot corrosion.

  • PDF

21세기를 대비한 초고속 해상수송체계 개발

  • Kim, Hun-Cheol;Chang, Seok;Yang, Seung-Il;Kang, Chang-Gu;Koh, Chang-Du
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.37-39
    • /
    • 1995
  • 가스터빈, 워터제트 등 기존의 추진시스템을 이용한 초고속선의 핵심기술 등을 종합하여 중형 화물선은 일본 TSL 수준에 도달시키고 중간목표로 설정한 선박의 실용화를 단계적으로 추진 하며, 선형기술, 선체 구조기술, 추진시스템기술, 원자력 안전기술, 해상 교통관제기술 등 이에 필요한 기술을 개발한다. 이들 기술은 21세기에 걸맞는 최첨단 기술이 될 것이다. 선박개발과 병행하여 초고속 선박의 운항과 조화를 이루는 고속 하역설비를 갖춘 항만시설의 개발도 함께 추진되어야 할 것이다. 초고속 해상 물류체계의 구축을 위해서는 수송 수단인 선박뿐만 아니라 항만, 하역시스템의 고속 현대화가 필요하다. 그러므로 초고속 선박과 접안, 하역이 가능한 전 용항만의 설계와 개발을 위해서는 이에 관련된 국내의 공공연구기관들과 SOC 관련 엔지니어 링사, 조선사 등 민간기업의 참여로 추진해야할 것이다. 또한 원자력 추진선 개발을 위해서는 선박용 원자로 및 연료기술이 필요하므로 원자력영구소와 미국의 참여로 공동개발하며, 상대국 에도 전용 항구가 필요하므로 해당국가간의 협약에 의해 하역장비, 운한 안전기술 등을 개발하고 건설하는 등 국제 컨소시엄의 구성이 바람직하다. 다만 기술개발의 성공과 핵심기술의 확보를 위하여 우리나라가 Initiative를 장악할 필요가 있다고 판단된다.

  • PDF

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.

Propulsion System for PAV Development : Now and Tomorrow (PAV용 미래형 추진기관의 현황 및 전망)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.305-308
    • /
    • 2009
  • In this paper, we present the status and prospect for PAV propulsion system. Reciprocating engines are suitable for current PAV because of its efficiency and price advantages. However, fuel cells and batteries may replace conventional engines in the near future.

  • PDF

A study of the hybrid electric drive generating mode in naval ships (함정용 하이브리드 전기추진 시스템 발전기 모드 적용에 대한 연구)

  • Ryu, Seung-hyun;Jung, Sung-young;Oh, Jin-seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.967-972
    • /
    • 2015
  • Because of recent interests in energy conservation and prevention of environmental pollution, research related to these topics is increasing. The U.S. Navy has started to study the HED (hybrid electric drive) system in order to improve the COGAG propulsion system's fuel efficiency in AEGIS destroyers. (This ship's fuel consumption is 40% of the total fuel consumption of the U.S. Navy.) In addition, the Korean Navy is considering applications of the HED system in AEGIS destroyers. The purpose of this study is to analyze the U.S.A.'s HED system and to simulate its generating mode energy saving rate using LabVIEW. The results confirmed that the fuel savings are about 700 kg/h.