• Title/Summary/Keyword: 가스온도

Search Result 3,264, Processing Time 0.041 seconds

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst (란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응)

  • Bang, Yong-Ju;Seo, Jeong-Gil;Lee, Gi-Chun;Park, Chan-Jung;Kim, Hyung-Tae;Song, In-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.168-174
    • /
    • 2011
  • Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts ($LaMO_{3}$: M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the $LaNiO_3$ catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts ($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that $LaNi_{0.9}Pt_{0.1}O_{3}$ catalyst served as the most efficient catalyst. Supported perovskite catalysts ($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, $20LaNi_{0.9}Pt_{0.1}O_{3}$/$Al_{2}O_{3}$ catalyst exhibited the highest conversion of odor compounds of 88.7% at $180^{\circ}C$.

Analysis of the Mean Uranium Valence of $U_{1-y}Er_{y}O_{2{\pm}x}$ Solid Solutions in terms of Lattice Parameter and Oneen Potential (격자상수 및 산소포텐샬에 의한 $U_{1-y}Er_{y}O_{2{\pm}x}$ 고용체의 평균우라늄원자가 분석)

  • Kim, Han-Soo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.118-128
    • /
    • 1996
  • The lattice parameters of stoichiometric $UO_2$ and $U_{1-y}Er_{y}O_2$ in the range of y=0.01 to y =0.33 were determined with use of X-ray diffraction data. Oxygen potentials have been measured by means of a thermogravimetric method in the range of 1200~$1500^{\circ}C$ and $10^{-14}$ $\leq$ $Po_2$ $\leq$ $10^{-3}$ for pure $UO_2$ and $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions with y=0.02, y=0.06 and y=0.20, respectively. Their oxygen partial pressures were maintained by controlling $CO_2$/CO mixture atmosphere, and the $Po_2$ values corresponding to x of $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions were measured with an electrolyte oxygen sensor. The lattice parameter decreases linearly with an increase in the erbium content. The change of the lattice parameter can be expressed in a linear equation of y as a($\AA$) =5.4695-0.220y for 0 $\leq$y$\leq$0.33. The experimental coefficient of y -0.220 in $U_{1-y}Er_{y}O_2$ was an intermediate value between the calculated values -0.273 and -0.156 in the case of $U^{5+}$ and $U^{6+}$, respectively. The (equation omitted) has been found to undergo abrupt increase in the range of -360 to -270 kJ/mole for y=0.06 and -320 to -220 H/mole for y=0.20, respectively, in the temperature range of 1200-$1500^{\circ}C$. (equation omitted) increases with erbium content, but the effect of the dopant for x =0.01 is less significant than that for stoichiometry. The oxygen potentials for $UO_2$ and $U_{0.98}Er_{0.02}O_{2+x}$ can be approximately represented by the $U^{5+}$/$U^{4+}$ model but those for y$\geq$ 0.06 in $U_{1-y}Er_{y}O_{2{\pm}x}$ solid solutions cannot be interpreted by the mean uranium valence model.

  • PDF

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Effect of Application of Rice Bran Extract on Quality of Agaricus bisporus during Storage (쌀겨추출물을 적용한 양송이의 저장 중 품질 변화)

  • Park, Hye Jin;Kim, Gun-Hee
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.834-844
    • /
    • 2014
  • Postharvest browning of mushroom (Agaricus bisporus) reduces the shelf life of harvested mushrooms. Here, mushrooms were dipped in various solutions (distilled water; DW, 0.25% rice bran extract; RB, 0.1% ascorbic acid; AA, RB + AA) for 3 min. After air-drying at room temperature, the dipped mushrooms were packaged in a polypropylene (PP) films and stored at 4 or $15^{\circ}C$. The quality changes of mushrooms were measured in terms of color, gas composition, firmness, and sensory evaluation during storage. Rice bran extract was measured for total polyphenol content, total flavonoid content, DPPH, ABTS radical scavenging, chelating activity and PPO inhibition activity. No difference in firmness were found in the mushroom samples regardless of dipping solution or storage temperature. At both 4 and $15^{\circ}C$ storage temperatures, RB + AA solution-dipped samples showed the highest L value and lowest delta E value. During the storage period, sensory evaluation showed that overall acceptability of mushrooms treated with RB and RB + AA solution was higher than that of the untreated mushrooms. Total polyphenol and flavonoid contents of 0.25% rice bran extract were $36.42mg\;GAE{\cdot}g^{-1}$ and $4.85mg\;QE{\cdot}g^{-1}$, respectively. The DPPH and ABTS radical scavenging activity of 0.1% ascorbic acid was higher than that of 0.25% rice bran extract. The highest copper ($Cu^{2+}$) chelating activity was found in the 0.25% rice bran extract. The PPO inhibition activity of 0.1% ascorbic acid was higher than that of 0.25% rice bran extract. Our results suggest that 0.25% rice bran extract with 0.1% ascorbic acid is effective anti-browning agent for maintaining quality of Agaricus bisporus during storage.

Genetic Analysis of Natural Microflora in the Stored Joraengyi Rice Cake and Their Capability of Propionic Acid Production (조랭이 떡에 존재하는 자연균총 유전자 군집분석 및 천연유래 프로피온산 생성능 분석)

  • Park, Hee-Dae;Chae, Jung-Kyu;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.375-382
    • /
    • 2018
  • This study was conducted to analyze the microbial community and propionic acid production ability of natural microflora in the rice cakes. Genetic analysis of natural microflora in Jorangyi rice cake was performed to select propionic acid - producing bacteria. Selected propionic acid-producing bacteria were cultivated in TSB (tryptic soy broth) supplemented with glucose, and growth characteristics were analyzed by temperature and production of propionic acid was analyzed by gas chromatography (GC-FID). Linearity, detection limit, quantitative limit, and recovery rate were measured to verify propionic acid assay. A total of 98 microbial strains were detected from microflora of Joraengyi rice cake that grew after expiration of shelf life. Lactobacillus casei group accounted for 50.48% and Lactobacillus buchneri was 29.60%. Propionic acid - producing bacteria were Propionibacterium thoenii, P. cyclohexanicum, Propionibacterium_uc, P. jensenii, and P. freudenreichii. Natural bacteria and Lactobacillus spp. did not produce propionic acid during 14 days but P. cyclohexanicum, P. freudenreichii subsp. Shermanii, P. thoenii and P. jesenii produced $263.47{\mu}g/mL$, $338.90{\mu}g/mL$, $325.43{\mu}g/mL$ and $222.17{\mu}g/mL$ during 4 days and 2,462.02 and 2,904.78, 2,220.64, $3,519.17{\mu}g/mL$ during 14 days. As a result of this study, it was affirmed that the natural microflora of Joraengyi rice cake during storage can produce propionic acid from natural sources even if a high concentration of propionic acid is not intentionally added. Because of characteristics of rice cake composed of starch and glucose. This study will be used as a recognition criterion to detect natural preservatives such as propionic acid in starchy foods such as rice cakes and as reference standard safety management data.

Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do (울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용)

  • Jang, Hyeong Seok;Kang, Nam Seon;Kim, Kyeong Mi;Jeon, Byung Hee;Park, Joon Sang;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1152-1160
    • /
    • 2017
  • A unicellular green alga was axenically isolated from a tidal pool on Ulleung-do, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Auxenochlorella protothecoides. The current study is the first record of this species in Korea. The microalgal strain was named as A. protothecoides MM0011 and its growth, lipid and pigment compositions, and biomass properties were investigated. The strain is able to thrive in a wide range of temperatures ($5{\sim}35^{\circ}C$) and to withstand up to 1.5 M NaCl. The results of GC/MS analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). Its major fatty acids were linoleic acid (27.6%) and ${\alpha}-linolenic$ acid (39.6%). Thus, this indigenous microalga has potential as an alternative source of ${\omega}3$ and ${\omega}6$ PUFAs, which currently come from fish and plant oils. Also, the HPLC analysis revealed that the value-added antioxidant, lutein, was biosynthesized as the accessory pigments by the microalga. A proximate analysis showed that the volatile matter content was 85.6% and an ultimate analysis indicated that the gross calorific value was $20.3MJ\;kg^{-1}$. Since 40.5% of total nitrogen and 27.9% of total phosphorus were removed from the medium, respectively, it also has potential as a feedstock for biofuel applications which could be coupled to wastewater treatment. In addition, the biomass may also serve as an excellent animal feed because of its high protein content (51.4%). Therefore, A. protothecoides MM0011 shows promise for application in production of microalgae-based biochemicals and as a biomass feedstock.