• 제목/요약/키워드: 가스온도

Search Result 3,264, Processing Time 0.034 seconds

A Kinetic Studies of the Pyrolysis of Waste Plastic Based on the Thermogravimetic Analyses (폐플라스틱의 열분해 시 열중량 분석 및 동역학 연구)

  • Jung, Won Hak;Hwang, Hyeon Uk;Kim, Myung Gyun;Sun, JianFeng;Mutua, Nzioka Antony;Kim, Young Ju
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Waste plastic differs in its speed of combustion owing to its variety in composition as well as kinds of plastic. This study is aimed at examining the thermal weight analysis and determination of its kinetics in order to derive the design element in pyrolysis of RPF (Refused Plastic Fuel) as the plastic solid fuel. Based on the result of TGA (Thermogravimetric analysis), kinetic characteristics were analyzed by using Kissinger method which are the most common method for obtaining activation energy, and experimental conditions of TGA were set as follows: in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of $5{\sim}50^{\circ}C/min$, and maximum hottest temperature of $800^{\circ}C$. The method used for determining the property of waste plastic when thermally decomposed was thought feasible as the basic data in deciding the performance, design, and optimal operating condition of the reactor in the actual reactor.

Development of Low Temperature Thermal Desorption System and Remediation of Soil Contaminated with Petroleum Hydrocarbon (열순환식 저온열탈착 정화장치의 개발 및 유류오염 토양 현장 적용)

  • Kim, Guk-Jin;Lee, Sun-Hwa;Park, Kwang-Jin;Kim, Chi-Kyung;Lee, Cheol-Hyo;Kim, Do-Sun;Cho, Seok-Hee;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.62-68
    • /
    • 2008
  • The Low Temperature Thermal Desorption (LTTD) System equipped with a soil transfer unit, a rotary kiln, RTO, cyclones and a bag filter etc. was developed. The LTTD system was designed to be economically operated using LPG as a fuel and recirculating the discharged gas from the LTTD system through RTO. For the performance test of LTTD system the soil contaminated with light and heavy oils (2,690 mg TPH/kg soil) and with particle sizes below 50 mm was fed into the rotary kiln of LTTD system at 7$m^3$/hr with retention time of 15 minutes. Operation temperatures of LTTD system for the removal of soil TPH were $567^{\circ}C$ and $692^{\circ}C$. The residual TPH after treatment was 46 mg/kg and 32mg/kg respectively at each temperature condition, which shows high TPH removal efficiencies of the developed LTTD as 98.3% and 98.9%.

Characteristic of PECVD-$WN_x$ Thin Films Deposited on $Si_3N_4$ Substrate ($Si_3N_4$ 기판 위에 PECVD 법으로 형성한 Tungsten Nitride 박막의 특성)

  • Bae, Seong-Chan;Park, Byung-Nam;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.17-25
    • /
    • 1999
  • Tungsten nitride($WN_x$) films were deposited by PECVD method on silicon nitride($WSi_3N_4$) substrate. The characteristics of $WN_x$ film were investigated with changing various processing parameters ; substrate temperature, gas flow rate, rf power, and different nitrogen sources. The nitrogen composition in $WN_x$ film varied from 0 to 45% according to the $NH_3$ and $N_2$ flow rate. The highest deposition rate of 160 nm/min was obtained for the $NH_3$ gas and relatively low deposition rate of $WN_x$ films were formed by $N_2$ gas. $WN_x$ films deposited on $WSi_3N_4$ substrate had higher deposition rate than that of TiN and Si substrates. The purity of $WN_x$ film were analyzed by AES and higher purity $WN_x$ films were deposited using $NH_3$ gas. The XRD analysis indicates a phase transition from polycrystalline tungsten(W) to amorphous tungsten nitride($WN_x$), showing improved etching profile of $WN_x$ films Thick $WN_x$ films were deposited on various substrates such as Tin, NiCr and Al and maximum thickness of $1.6 {\mu}m$ was obtained on the Al adhesion layer.

  • PDF

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

Fabrication of Silicon Carbide Candle Filter and Performance Evaluation at High Temperature and Pressure (탄화규소 캔들형 필터의 제조 및 고온고압 하에서의 성능평가)

  • Lee, Sang-Hun;Lee, Seung-Won;Lee, Kee-Sung;Han, In-Sub;Seo, Doo-Won;Park, Seok-Joo;Park, Young-Ok;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.503-510
    • /
    • 2002
  • Silicon carbide candle filters for the pressurized fluidized bed combustion system were fabricated by extrusion process. Carbon black was added to control the porosity. Inorganic additives such as clay and calcium carbonate were added to exhibit appropriate strength. Silicon carbide layer with a finer pore size (mean pore diameter ~$10{\mu}m$) was coated on the silicon carbide support layer (mean pore diameter ~$47{\mu}m$, porosity ∼40%). After that, the filter was sintered at 1400${\circ}C$ in air. We evaluated the filtration performances of the filter at 500${\circ}C$ and $5kgf/cm^2$ of pressure. As a result, high separation efficiency, >99.999% was measured. It is expected that silicon carbide candle filter can be successfully used for the pressurized fluidized bed combustion system.

Effects of hydrogen plasma on the formation of self-organized InAs-quantum dot structure (자기조직화에 의한 InAs 양자점 구조 형성에 미치는 수소플라즈마의 효과)

  • ;;;K. Ozasa;Y. Aoyagi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.351-359
    • /
    • 1996
  • We have investigated the effect of hydrogen plasma on the formation of InAs QDs (quantum dots) structure by using a CBE (chemical beam epitaxy)system equipped with ECR (electron cyclotron resonance) plasma source. It is confirmed that the formation of self-organized InAs-QDs on GaAs is started after the growth of InAs layer up to 2.6 ML (monolayer) with the irradiation of hydrogen plasma while it is started after 1.9 ML without hydrogen gas and hydrogen plasma through the observation of RHEED patterns. Density and size of the QDs formed at $T_{sub}=370^{\circ}C$ are $1.9{\times}10^{11}cm^{-2}$ and 17.7 nm without hydrogen plasma, and $1.3{\times}10^{11}cm^{-2}$ and 19.4 nm with hydrogen plasma, respectively. It is also observed from the PL(photoluminescence) measurement on InAs-QDs that red shift in PL peak energy and broadening in FWHM (full width at half maximum)of PL peak caused by the effects of hydrogen plasma on the increment of size and its distribution. These effects of hydrogen plasma are considered as a act of atomic hydrogen which enhances the layer-growth of InAs on GaAs resulted from the relief of misfit strain between GaAs substrate and InAs.

  • PDF

Hydrothermal Synthesis of Ultra-fine SrAl2O4:Eu Powders and Investigation of their Photoluminescent Characteristics (수열합성법에 의한 SrAl2O4:Eu 초미세 분말 합성공정 및 형광 특성)

  • 박우식;김선재;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.370-374
    • /
    • 2004
  • Sr$_{l-x}$Ba$_{x}$Al$_2$O$_4$:Eu (x = 0, 0.1, 0.2, and 0.3 mol) phosphor was synthesized by the hydrothermal method and its properties of photoluminescence and long-afterglow were investigated. The mixtures of Sr(NO$_3$)$_2$, Al(NO$_3$)$_3$9$H_2O$, and Eu(NO$_3$)$_3$$.$6$H_2O$ salts dissolved in distilled water, after controlling their pH by NH$_4$OH solution, put into an Autoclave reactor with high temperature and pressure to react. Such synthesized SrAl$_2$O$_4$:Eu powders showed homogeneous and ultra-fine particles of sub-micron size. In order to have the photoluminescence characteristic, powders were heat treated at 1100 -140$0^{\circ}C$ for 2 h in Ar/H$_2$ reduction atmosphere. Photoluminescence spectra showed a excitation along the wide wavelength of 250 ∼ 450 nm, and broaden emission with maxima peak at 520 nm. Also, it showed a good long afterglow with decaying over 1000 sec after excitation illumination for 10 min. In addition, the microstructure and crystal structure of SrAl$_2$O$_4$:Eu powders were investigated by an SEM and XRD, respectively.

Effect of High Concentration Carbon Dioxide and Pre-Cooling Treated with Solid Carbon Dioxide on the Storability of Radish Sprout in MA Storage (고체 이산화탄소를 이용한 고농도 이산화탄소와 예냉 처리가 싹채소의 저장성에 미치는 영향)

  • Kang, Ho-Min;Choi, In-Lee;Kim, Il-Seop;Park, Keun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.285-290
    • /
    • 2009
  • The solid carbon dioxide used for prolongation shelf life of radish sprout that was just 7days. The developed equipment for treated carbon dioxide consisted of solid carbon dioxide evaporated part and high carbon dioxide and low temperature treated part that can hold products. The inner temperature of equipment decreased temperature to below $5^{\circ}C$ from room temperature for 10minutes and carbon dioxide concentration increased to 80%. The radish sprouts treated 4 different conditions that was nontreated condition (control), solid carbon dioxide put into package (CO2-1), solid carbon dioxide treated before storage using the developed equipment (CO2-2), solid carbon dioxide treated before storage and during storage, and sprout packaged with solid carbon dioxide (CO2-3). These radish sprout packaged with $25{\mu}m$ ceramic film stored at $8^{\circ}C$. The high carbon dioxide treatment did not affect the fresh weight loss. The carbon dioxide and oxygen content in package changed 40% and 10%, respectively in CO2-1 and CO2-2 at 1day after treatments. But carbon dioxide content of all treatments was decreased to 5% and stabilized. The high carbon dioxide showed the effect of reduction ethylene production, but did not affect to visual quality and offodor.

Preparation of ZrC/SiC by Carbothermal Reduction of Zircon (지르콘의 탄소열환원에 의한 ZrC/SiC의 합성)

  • Park, Hong-Chae;Lee, Yoon-Bok;Lee, Cheol-Gyu;Oh, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1044-1055
    • /
    • 1994
  • The preparation of ZrC/SiC mixed powders from $ZrSiO_4/C$ and $ZrSiO_4/Al/C$ systems was attempted in the temperature range below $1600^{\circ}C$ under Ar or $Ar/H_2$ gas flow(100-500ml/min). The formation mechanism and kinetics of ZrC/SiC were suggested and the resultant powders were characterized. In $ZrSiO_4/C$ system, ZrC and SiC were formed by competitive reaction of $ZrO_2(s)$ and SiO(g) with carbon at temperature higher than $1400^{\circ}C$. The apparent activation energy for the formation of ZrC was approximately 18.5kcal/mol($1400-1600^{\circ}C$). In $ZrSiO_4/Al/C$ system, ZrC was formed by reaction of ZrO(g) with Al(l, g) and carbon at temperature higher than $1200^{\circ}C$, and SiC was formed by reduction-carbonization of SiO(g) with Al(l, g) and carbon at temperature higher than $1300^{\circ}C$. The products obtained at $1600^{\circ}C$ for 5h consisted of ZrC with lattice constant of $4.679{\AA}$ and crystallite size of $640{\AA}$, and SiC with lattice constant of $4.135{\AA}$ and crystallize size of $500{\AA}$. And also, the mean particle size was about $21.8{\mu}m$.

  • PDF

Influence and Application of an External Variable Magnetic Field on the Aqueous HCl Solution Behavior: Experimental Study and Modelling Using the Taguchi Method (염산 수용액 거동에 대한 가변 외부 자기장의 적용과 영향: 실험 연구 및 Taguchi 법을 이용한 모델링)

  • Hashemizadeh, Abbas;Ameri, Mohammad Javad;Aminshahidy, Babak;Gholizadeh, Mostafa
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.215-224
    • /
    • 2018
  • Influences of the magnetic field on 5, 10 and 15 wt% (1.5, 3 and 4.5 M) HCl solution behaviour, which has widespread applications in petroleum well acidizing, were investigated in various conditions. Differences in the pH of magnetized hydrochloric acid compared to that of normal hydrochloric acid were measured. Taguchi design of experimental (DoE) method were used to model effects of the magnetic field intensity, concentration, velocity and temperature of acid in addition to the elapsed time. The experimental results showed that the magnetic field decreases [$H^+$] concentration of hydrochloric acid up to 42% after magnetization. Increasing the magnetic field intensity (with 28% contribution), concentration (with 42% contribution), and velocity of acid increases the effect of magnetic treatment. The results also demonstrated that the acid magnetization was-not influenced by the fluid velocity and heating. It was also displayed that the acid preserves its magnetic memory during time. The optimum combination of factors with respect to the highest change of [$H^+$] concentration was obtained as an acid concentration of 10% and an applied magnetic field of 4,300 Gauss. Due to the reduction of HCl reaction rate under the magnetization process, it can be proposed that the magnetized HCl is a cost effective and reliable alternative retarder in the matrix acidizing of hydrocarbon (crude oil and natural gas) wells.