• Title/Summary/Keyword: 가스사출성형

Search Result 39, Processing Time 0.026 seconds

가스사출성형에서 성형조건에 따른 ABS 성형품의 가스채널의 변화

  • 박태원;한성렬;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.221-221
    • /
    • 2004
  • 플라스틱의 사출성형중 용용 수지에 가스를 주입하는 가스사출성형(Gas Assisted Injection Molding GAIM)에 의해 성형품을 만드는 생산방법은 약 30년 전부터 유럽지역을 중심으로 시작되었다 GAIN의 개발 배경은 발포성형을 대체하기 위한 공법으로 개발되었다. 발포성형은 싱크마크(sink mark) 제거, 치수안정성, 강도보강의 목적으로 사용하는 공법이지만, 가스기포가 표면으로 빠져나오고 표면에 가스 기포가 발생하여 외관부품에 부적당하며, 두께가 5-6mm이하의 성형품에는 적용할 수 없고, 성형시간이 긴 문제점을 가지고 있어 이러한 문제를 보강한 공법을 연구할 결과로 GAIM이 탄생하게 되었다.(중략)

  • PDF

Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts (자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구)

  • Kang, Sae-Ho;Woo, Chang-Ki;Kim, Ok-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7729-7735
    • /
    • 2015
  • As plastic injection mold parts is suitable system mass production making mold. So thick steering wheel parts is desirable to carry out gas injection molding. Gas injection mold is skill to inject nitrogen gas postfilling melting raw material into mold. Gas injection mold have many advantage like retrenchment of material cost, upgrading the guality. etc. It was decided gate position to minimize warpage of parts analysis injection mold process using mold flow software and incase doing gas injection mold using normal p.p material. it occur big warpage. so it is object minimizing warpage of injection parts to change p.p material containing mineral 18% and removing fingering phenomenon trouble as changing gate position. Also in case carrying out gas injection mold, I did comparison and analysis to grasp shape flow in gas setting a standard gate after flowing in raw material. Through this study, I found out changing of thickness by parts shape and it can occur warpage of parts by plastic material even though it carry out gas injection mold and it had a direct influence on trouble of parts by gate position.

Modeling of Void growth in partial Frame Process (PFP성형공정의 기포성장에 관한 모델링)

  • 안경현
    • The Korean Journal of Rheology
    • /
    • v.8 no.3_4
    • /
    • pp.207-214
    • /
    • 1996
  • 사출성형은 많은 장점과 유용성에도 불구하고 싱크마크나 휨과 같은 변형문제를 피 하기 어렵다. 이것은 성형품의 부위별 온도분포 및 냉각속도 차이에 의한 잔류응력에 기인 하는 것으로 구조가 복잡하거나 크기가 쿤 경우에 더욱 더 문제가 되기 쉽다. 이와 같은 문 제를 해결하기 위하여 성형품의 내부에 기포를 형성시켜 수지의 수축분을 기포의 성장으로 보상하여 주는 가스사출성형이 개발되어 많이 활용되고 있는 실정이다. 한편 일반 가스성형 과 달리 수지를 완전히 채운후 저압의 공기를 이용하여 기포를 발생시켜 수지의 체적수축분 을 보상해주는 PFP성형기술은 가스사출의 나점인 공기의 유동조절문제를 해결하고 비용이 저렴한 등의 잇점을 가지고 있다. 이 과정은 가스성형공정의 2차 침투과정과 매우 유사하나 아직까지 이에대한 이해나 연구는 매우 부족한 실정이다 본 연구는 기포의 성장이 수지의 체적수축에 의한 것이라는 가정에 근거하여 기포성장길이에 관한 모델링을 수행한 것이다. 실험결과와의 비교를 통하여 기본 가정에 대한 타당성을 검증하고 여러 인자들의 영향을 살 펴보았다. 본 연구는 PFP성형공정에 대한 이해를 증진시켜 금형설계 및 성형조건 설정에 대한 가이드라인을 제시하며 아울러 PFP공정에 대한 보다 체계적인 이해 및 일반가스성형 의 2차 침투과정 등의 관련 현상에 대한 이해 및 연구에 도움이 될것으로 기대된다.

  • PDF

A Study on the Molding Characteristics of Injection Compression Molding Through Computer Simulation (컴퓨터 해석을 통한 사출압축성형의 성형특성에 관한 연구)

  • Chun, Y.H.;An, H.G.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Injection molding is one of the widely used polymer processing operations. It is being used for not only conventional injection molding but gas injection molding, water injection molding, and injection compression molding. Injection compression molding involves injection and compression operation, and it gives uniform physical property and high dimensional quality of product. In this study, injection compression characteristics for various product shapes have been investigated by computer simulation. Product containing side wall showed not much effective in injection compression molding since wall thickness direction was perpendicular to the compression direction. Uniform and low shrinkage was observed in injection compression molding comparing conventional injection molding. Subsequently injection compression molding can be used for molding precise product. Optimal injection compression molding condition was obtained using design of experiment for plastic lens and the results were compared with conventional injection molding.

특별기고 - 신기술 LIM의 공정과 설계

  • Mun, Geon-Seop
    • The Science & Technology
    • /
    • v.32 no.3 s.358
    • /
    • pp.63-67
    • /
    • 1999
  • 새로운 기술 LIM은 공압출과 사출성형을 일체화한 기술로 비교적 복잡한 라멜라(층상)모폴로지(형태학)를 갖는 블렌드제품을 생산하는 방법이다. 종래의 블렌드보다 가스 및 용제차단성, 내열성, 내약품성, 광학적 투명성 등을 보완시킨 라멜라사출성형공정이 개발됨으로써 성형업자들은 3종 또는 그 이상의 다른 폴리머들을 직접 사출성형하여 통상적인 블렌드공정에 비해 물성을 크게 향상시킬 수 있게 되었다.

  • PDF

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

Effects of Processing Variables on the Gas Penetrated Part of Gas-Assisted Injection Molding (가스사출성형인자가 가스사출성형품의 중공부 형성에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.144-150
    • /
    • 2005
  • Gas-assisted injection molding (GAIM) process is reducing the injection pressure during mold filling required as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process introduces new parameters and makes the application more difficult because the process interacts between gas and melt during injection molding process. Important GAIM factors that involved in this process include gas penetration design, locations of gas injection points, shot size, gas injection delay time as well as common injection molding parameters, gas pressure and gas injection time. In this study, the experiments were conducted to investigate effects of GAIM process variables on the gas penetration for PP and ABS moldings by changing gas injection point. Taguchi method was used fer the design of experiment. When the gas was injected at cavity's center, the most effective factor was shot size. When the gas was injected at cavity's end, the most effective factor was melt temperature. Injection speed was also an effective factor in GAIM process.

Numerical study on the effect of the PET bottle thickness difference for blow molding process conditions (블로우 성형 공정 변수가 PET 용기의 두께 편차에 미치는 영향에 관한 수치해석 연구)

  • Kim, Jeong-soon;Kim, Jong-duck
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2009
  • This study presents the blow molding of injection stretch-blow molding process for PET bottle. The numerical analysis of the blow molding of PET bottle is considered in this paper using CAE with a view to minimize the thickness difference. In order to determine the design parameters and processing conditions in blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a shell model with thickness has been introduced for the purpose and blow simulations with 3-type blow process condition are carried out. The simulations resulted in the thickness distribution in good agreement with the physical phenomenon. Also, from the result of numerical analysis, we appropriately predicted the thickness distribution along the PET bottle wall and Using the result of numerical analysis we apply the preform design and blow molding process condition for optimization.

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).