• Title/Summary/Keyword: 가스분무

Search Result 318, Processing Time 0.018 seconds

Flame Stabilization and Control in Gas Turbine Combustor (가스터어빈 연소기의 화염 안정화와 제어)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • This paper presents the characteristics of lifted height and flame length from non-premixed jet flames in highly preheated air to investigate the detail combustion mechanism in the gas turbine or HCCI engine, etc. Special attention was paid to the effect of preheated air temperature, oxygen concentration and fuel injection flow rate on flame length and lifted hight. By using highly preheated air, stable flames were formed even in low oxygen concentration condition. The lifted height increased with decreasing preheated air temperature, where the flame length showed opposed phenomena. The flamelet model, which is thought to have very thin flamelet, is difficult to applicable to the present flame conditions which is formed In low oxygen concentration in highly preheated air.

  • PDF

An investigation of LPG fuel supply method for Liquid phase LPG injection system (LP가스연료 액상공급시스템 특성연구)

  • Kim, C.U.;Oh, S.M.;Choi, S.J.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.18-23
    • /
    • 2004
  • An experimental studies of conventional gasoline fuel pump were carried out to obtain fundamental data fur liquid phase LPG injection(LPLi) system. A regenerative type and a roller-vane type of pumps were investigated in various operational condition. The experiments were performed to obtain flow rate of LPG fuel as a function of pressure differences and temperatures. The regenerative pump had too low flow rate at some experimental conditions to use this pump system for LPLi fuel supply system. On the other hand, the roller-vane type pump can be applied to the system only if its check valve is modified. Cavitation might occur in this system which can result in system noise, flow rate variation, and pump durability problem. To solve these problems the system is needed to increase $NPSH_{re}$(required net positive suction head).

  • PDF

Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor (가스터빈 연소기에서 1D 열음향 모델을 이용한 연소불안정 예측)

  • Kim, Jin Ah;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • The objective of the current study is to develop an 1D thermoacoustic model for predicting basic characteristics of combustion instability and to investigate effects of key parameters on the instabilities such as effects of flame geometry and acoustic boundary conditions. Another focus of the paper is placed on limit cycle prediction. In order to improve the model accuracy, the 1D model was modified considering the actual flame location and flame length (i.e. distribution of time delay). As a result, it is found that the reflection coefficients have a great effect on the growth rate of the instabilities. In addition, instability characteristics are shown to be strongly dependent upon the fuel compositions.

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

Combustion Instability Modeling in a Partially-premixed Gas Turbine Combustor using Finite Element Method (유한요소법을 이용한 부분 예혼합 가스터빈 연소기에서의 연소불안정 모델링)

  • Jang, Segu;Kim, Deasik;Joo, Seongpil;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • The current study has developed an in-house 3D FEM code in order to model thermoacoustic problems in a gas turbine combustion system and compared calculation results of main instability characteristics with measured ones from a lab-scale partially-premixed combustor. From the comparison of calculation results with the measured data, the current model could successfully capture the harmonic longitudinal instability frequencies and their spatial distributions of the acoustic field as well as the growth rate of self-excited modes.

Effect of Injection Characteristics on Performance in a LPLi Engine (LPG액상분상엔진의 분사특성이 성능에 미치는 영향)

  • Kim, Chang-Gi;Lee, Jin-Wook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

Analysis on Performance and Emission with Different Diesel Injection Methods in a Dual-Fuel Engine (디젤 분사방식에 따른 이종연료 엔진의 성능 및 배기 분석)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Jang, Hyungjoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2022
  • Performance and emissions with different diesel injection methods were analyzed in a natural gas-diesel, dual-fuel engine under low-load conditions. Natural gas was supplied to intake port during the intake stoke to form a natural gas-air premixed mixture for all methods. Diesel was injected directly into the cylinder during the compression stroke in three ways: early injections, late injections, and a combination of early and late injections. The early injections had the highest thermal efficiency among the three methods owing to its highest combustion efficiency. The wide dispersion of diesel before the combustion initiation also allowed superior emissions characteristics.

Acoustic Analysis in an Annular Gas Turbine Combustor (GT24) Network Modeling Approach (네트워크 모델링 기법을 이용한 환형 가스터빈 연소기(GT24)에서의 음향장 해석)

  • Jaewoo Jang;Hyungu Roh;Daesik Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.119-125
    • /
    • 2023
  • In this research, a network model was developed to predict combustion instability in an annular gas turbine combustor (GT24) for power generation. The model consisted of various acoustic elements such as several ducts and area changes which could represent a real combustor with a complex geometry, applied mass, momentum, and energy equations to each element. In addition, a one-dimensional network model through a cylindrical coordinate system has been proposed to predict various acoustic modes. As a result of the analysis, the key resonant frequencies such as longitudinal, circumferential, and complex modes were derived from the EV combustor of GT24, and the reliability of the current model was verified through comparison with the 3D Helmholtz solver.

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.