• Title/Summary/Keyword: 가수분해종

Search Result 9, Processing Time 0.017 seconds

Removal Mechanism of Phosphorus in Wastewater Effluent using Coagulation Process (응집공정을 이용한 하수처리수 중의 인 제거 Mechanism)

  • Han, Seung-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.774-779
    • /
    • 2010
  • The experimental results for the analysis of aluminum hydrolysis species with PACls (polyaluminum chloride) prepared by different basicity (r value) showed that monomeric Al species were reduced while polymeric Al species were increased with an increase in basicity for PACls. The PACl with 2.2 of r value contained the highest amount of polymeric Al species. According to the experimental results for the phosphorus removal, the alum and PACl (r=0), which consisted of mainly monomeric Al species, were the most effective for phosphorus removal. Therefore, it was concluded that the Al coagulant containing higher amount of monomeric or lower molecular Al species would be more beneficial for phosphorus removal.

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process (응집공정에서 발생하는 알루미늄 가수분해종 분포특성)

  • Song, Yu-Kyung;Jung, Chul-Woo;Hwangbo, Bong-Hyung;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Comparison of the characteristics of Al(III) hydrolyzed species by improved ferron assay test (개선된 Ferron 분석 비교를 통한 Al(III) 가수분해종 특성 연구)

  • Yoon, Mihyoung;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.177-186
    • /
    • 2022
  • In this study, newly improved Ferron assay test haved on timed spectrometry was used for the determination of hyolrolytic Al species presented in PACl coagulant. The color development reagent ferron was prepared by using conventional method and two newly developed methods. Then the ferron assay test was used to compare and analyze the distribution of Al(III) hydrolyzed species presented in the prepared PACl and alum. The preparing method of reagent A required an aging period of 7 days by adding a hydroxylamine hydroxide and a 1,10-phenanthroline monohydrate reagent, whereas the preparing method of reagent B was used as a coloring agent immediately without aging time. The regression analysis between UV absorbance and Al concentrations of conventional method and newly developed method of ferron reagents in low-concentration aluminum solutions and high-concentration aluminum solutions, showed the correlation coefficients of 0.999 or higher, as showing high correlations of conventional method and newly developed method. Applying Ferron assay test, Al species in the PACls and alum were classified as Ala(monomeric Al), Alb (polymeric Al), and Alc (colloidal and precipitated Al). Distribution of Al(III) hydrolyzed species according to the preparation of ferron colorimetric reagents was similar.

Comparison of Fe(III) Coagulants and their Characterization for Water Treatment (수처리용 Fe(III)계 응집제의 특성 및 응집특성 비교)

  • Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.169-176
    • /
    • 2016
  • This research explored the feasibility of preparing and utilizing preformed polymeric solution of Fe(III) as coagulants for water treatment. The differentiation and quantification of hydrolytic Fe(III) species in coagulant was done by utilizing spectrophotometric method based on the interaction of Fe(III) with Ferron as a complexing agent. The properties of the synthesized polymeric iron chloride (PICl) showed that the quantity of polymeric Fe(III) produced at r = 1.5 was 20% of the total iron in solution, as showing maximum contents. Coagulation experiments were conducted under the condition of various coagulant doses and pH for each coagulant prepared. From the comparison of the characterization of coagulation for $FeCl_3$ (r = 0.0) and PICl (r = 0.5, 1.0, 1.5) coagulants, PICl (r = 0.5, 1.0, 1.5) coagulants was found to be more effective than other coagulant for the removal of organic matters. The experimental results for the coagulation tests at various pH ranges showed that the PICl was least affected by the coagulation pH and PICl was very effective for the removal of turbidity and organic materials over wide pH range (pH 4-9) tested.

A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition (응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구)

  • Song, Yu-Kyung;Jung, Chul-Woo;Sohn, In-Shik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Effect of Metal Salt Coagulant on Membrane Fouling During Coagulation-UF Membrane Process (응집-UF 막 공정의 적용시 금속염 응집제가 막오염에 미치는 영향)

  • Jung, Chul-Woo;Shim, Hyun-Sool;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.523-528
    • /
    • 2007
  • The objectives of this research are to investigate the mechanism of coagulation affecting UF, find out the effect of metal salt coagulant on membrane fouling. Either rapid mixing + UF or slow mixing + UF process caused much less flux decline. For PACl coagulant, the rate of flux decline was reduced for both hydrophilic and hydrophobic membrane than alum due to higher formation of flocs. In addition, the rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. In general, Coagulation pretreatment significantly reduced the fouling of the hydrophilic membrane, but did little decrease the flux reduction of the hydrophobic membrane. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$ increases rapidly. This experimental results pointed out that precipitates of $Al(OH)_{3(s)}$ rather than dissolved Al(III) formation is major factor affecting flux decline for the membrane.

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.