• Title/Summary/Keyword: 가솔린 포트분사

Search Result 29, Processing Time 0.025 seconds

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

Technological Development of Engine for Automobiles (자동차 기관의 최신기술)

  • 조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.15-22
    • /
    • 1987
  • 이상 최근 10년 사이 현저하게 보여준 엔진관계의 신기술과 그 배경 등을 돌아 보았을 때 발전하 는 가운데 특히 4륜차용 2사이클 엔진의 몰락이나 엔진의 주요 부품인 기화기의 쇠태는 그 어느 것이나 시대의 요구에 대한 기술의 한께 혹은 신기술의 개발 템포에 추종키 여려웠던 때문인 것 으로 생각된다. 2사이클 엔진은 비출력이 높고 밸브기구가 없어서 구조가 간단한 등의 장점이 있는 반면 배출가스대책(특히 HC), 경부하시의 부정연소 등의 문제를 가지고 있어 4륜차용으로 서는 배출가스규제를 계기로 SAAB(스웨덴), DKW(서독)의 2사이클 엔진이 자취를 감추게 되었 고 현재 남아있는 것은 일본의 경트럭용 엔진에 지나지 않는다. 또 기화기에 대해서도 배출가 스규제에 대한 대응에 밀려 공연비의 제어성, 고도에 대한 보정성, 내열신뢰성, 제어성, 고도에 대한 보정성, 내열신뢰성, 운전성 등의 요구에 엄해진 반면 흡기포트내(PI), 혹은 흡기관 중양부 내(SPI) 가솔린분사방식에 눌려서 가변벤투리식 등도 미국(1982), 일본(1983)에서 발표되었으나 1985년형의 미국차 엔진에는 기화기의 정착율이 50%에 지나지 않는등승용차용 분야에서는 그 사용이 점차 줄어두는 추세에 있다.

  • PDF

A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing (디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구)

  • 이창식;이기형;전문수;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

Experimental Study on the Wall-Wetting Formation and Spray Characteristics of Gasoline Engine Injector (가솔린엔진 인젝터의 벽류 및 분무특성에 관한 실험적 연구)

  • Lee, Sung-Won;Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.815-820
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. Wall wetting fuel stream of the 4-hole and 12-hole injectors has been tested and measured with various installation angle and port masking shapes. Spray visualization has been performed to analyze spray formation, spray angle, and penetration length. Test result shows that wall wetting is greatly influenced by the induction air flow and injector installation angle. Wall wetting amount decreased as injector installation angle decreased. Masking decreased wall wetting amount by increasing local intake-air flow velocity due to the decreased section area. Spray visualization showed that the 12-hole injector has robust performance characteristics compared with the 4-hole injector.

A Study on Mixture Preparation in a Port Fuel Injection Sl Engine During Engine Starting (흡기포트 분사방식의 가솔린 엔진에서 냉시동시 혼합기 형성에 관한 연구)

  • 황승환;이종화;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • As the emission regulations on the automobiles have been increasingly stringent, precise control of air/fuel ration is one of the most important issues on the gasoline engines. Although many researches have been carried out to identify the fuel transport phenomena in the port fuel injection gasolines, mixture preparation in the cylinder has not been fully understood due to the complexity of fuel film behavior, In this paper, the mixture preparation during cold engine start is studied by using a Fast Response Flame ionization Detector.(FRFID) In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient($\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-in. $\alpha$( ratio of directly inducted fuel mass into cylinder from injected fuel mass) and $\beta$ (ratio of indirectly inducted fuel mass into cylinder from wall wetted fuel film on the wall) was increased with increasing cooling water temperature. To reduce a air/fuel ratio fluctuation during cold engine start, the appropriate fuel injection rate was obtained from the wall wetting fuel model. Result of air/fuel ratio control, air/fuel excursion was reduced.

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.

Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods (측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교)

  • Kim, J.H.;Rhim, J.H.;No, S.Y.;Moon, B.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF

Study on Full Load Operation Characteristics and Thermal Efficiency of 1.4L Turbo CNG SI Engine (1.4L급 터보 CNG SI엔진의 전부하 운전 특성 및 열효율에 대한 연구)

  • Bae, Jong-Won;Park, Cheol-Woong;Lee, Jeong-Woo;Kim, Yong-Rae;Kim, Chang-Gi;Lee, Sun-Youp;Lee, Jin-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • Natural gas is attracting attention as an alternative to existing fossil fuels. Natural gas has a high octane number. Therefore, knocking does not occur even if the compression ratio is increased, so that the thermal efficiency and the output can be improved. And it is relatively easy to apply the natural gas supply system to the internal combustion engine hardware system. In this study, a gasoline direct injection turbo engine was converted into a natural gas port injection type turbo engine. Therefore, the combustion and performance of the engine are measured and compared comprehensively in the region where the turbo operates.

Effects of Intake Gas Mixture Cooling on Enhancement of The Maximum Brake Power in a 2.4 L Hydrogen Spark-ignition Engine (수소 내연기관의 흡기 냉각 방법에 따른 최고 출력 향상에 관한 연구)

  • Kim, Yongrae;Park, Cheolwoong;Oh, Sechul;Choi, Young;Lee, Jeongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • Since hydrogen has the lower minimum ignition energy than that of gasoline, hydrogen could be also appropriate for the IC engine systems. However, due to the low ignition energy, there might be a 'back-fire' and 'pre-ignition' problems with hydrogen SI(Spark-ignition) combustion. In this research, cooling effects of intake gas mixture on the improvement of the maximum power output were evaluated in a 2.4 L SI engine. There were two ways to cool intake gas mixtures. The first one was cooling intake fresh air by adjusting inter-cooler system after turbocharger. The other one was cooling hydrogen fuel before supplying by using heat ex-changer. Cooling hydrogen was performed under natural aspired condition. The result showed that cooling fresh air from 40 ℃ to 20~30 ℃ improved the maximum brake power up to 6.5~8.6 % and cooling hydrogen fuel as -6 ℃ enhanced the maximum brake power likewise.