• 제목/요약/키워드: 가솔린엔진(gasoline engine)

검색결과 264건 처리시간 0.02초

가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구 (A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine)

  • 차준표;윤성준;이석훤;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구 (A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen)

  • 배재옥;최민수;서현욱;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

가솔린 엔진의 노킹 감소를 위한 엔진 튜닝 시험 연구 (The test research of gasoline tuning for the decrease of a knocking)

  • 양현수;천동준;이안석
    • 대한안전경영과학회지
    • /
    • 제9권2호
    • /
    • pp.183-194
    • /
    • 2007
  • 1. Through this experiment, we made certain that the best distinguished frequency area of the Hyundae Beta 2.0 engine's knocking is 6.8khz. 2. Through the experiment, we checked the output power voltage condition of the logging output with the generation of a engine knocking. And wechecked up that it generated maximumly up to 11.4 V which depends on the degree of the streng.

메탄올 개질연료를 사용한 가솔린 기관 실험 연구 (A Study on Characteristics of the SI Engine Using Methanol Reformulated Fuels)

  • 이석영;전충환
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2010
  • 본 연구는 엔진을 개조하지 않고 메탄올 개질연료를 사용하여 엔진의 성능과 배출가스 측면에서 가솔린 연료 사용시의 특성과 비교하였다. RM50(메탄올 개질연료)은 메탄올 연료의 특성중 하나인 넓은 가연한계범위를 가지고 있기 때문에 불안정한 운전조건에서도 가솔린 연료에 비해 상대적으로 안정된 운전상태를 유지하고 엔진의 안정적 운전상태를 결정하는데 사용되는 사이클 변동계수에 있어서도 10%이내의 안정된 수치를 보여주었다. 또한, 모든 운전조건에서도 RM50은 가솔린 연료를 사용하였을 때 보다 CO, HC, NOx의 배출물이 감소되었다. 그러나 소음특성의 경우 연소속도가 빠르기 때문에 가솔린 연료에 비해 상대적으로 약간 높은 값을 나타내었고 고무침지의 실험결과는 가솔린 연료 사용시의 실험결과와 유사하게 나타내며 사용 가능한 것으로 나타났다.

GDI 엔진의 분할 분사가 아이들 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Split Injections on the Stability of Idle Combustion and Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 노현구
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.221-226
    • /
    • 2014
  • This paper described the effect of split injections on the stability of combustion and emission characteristics in a direct injection gasoline engine at various operating conditions. In order to investigate the influence of direct injection gasoline engine, the fuel injection timing was varied direct fuel injection at various fuel pressure. The experimental apparatus consisted of GDI engine with 4 cylinder, EC dynamometer, injection control system, and exhaust emissions analyzer. The emission and combustion characteristics were analyzed for the fuel injection timing and fuel injection pressure strategies. It is revealed that CO and HC emissions are dramatically decreased at advanced injection timing. Also, engine performance is increased at increase fuel injection pressure.

합성가스를 이용한 SI 엔진의 냉간시동 배기가스 배출특성에 관한 연구 (A Study on Cold Start Emission Characteristics using the Syngas in a SI Engine)

  • 송춘섭;김창기;강건용;조용석
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.66-72
    • /
    • 2008
  • Fuel reforming technology for the fuel cell vehicles could be adopted to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to 2.0 liter gasoline engine during the cold start and early state of idle condition. Not only cold start HC emission but also $NO_x$ emission could be dramatically reduced due to the fact that syngas has no HC and has nitrogen up to 50% as components. Exhaust gas temperature was lower than that of gasoline feeding condition. Delayed ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in the gasoline internal combustion engine is an effective solution to meet the future strict emission regulations by the reduction of cold start THC and $NO_x$ emissions.

엔진 착화 라인의 생산성 향상을 위한 LPI 엔진 가솔린 연료 적용성에 대한 실험적 연구 (Experimental Study on Firing Test of LPI Engine Using Gasoline Fuel for Improving the Production Process at End of line)

  • 황인구;최성원;명차리;박심수;이종수
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.133-140
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of gasoline fuel to the LPI engine. Firing test bench was used in order to assess the effect on gasoline-injected LPI engine. Gasoline fuel was supplied into the reverse direction(3-4-2-1 cylinder) at 3.0 bar with commercial gasoline fuel pump. Engine test was performed using the firing test mode at end of line. The deviations of excess air ratio of each cylinder and maximum combustion pressure using gasoline fuel were within 0.1 and $1{\sim}2\;bar$. Engine start time was measured with changing coolant temperature at $20^{\circ}C,\;40^{\circ}C,\;80^{\circ}C$, respectively. Residual gasoline volume in the fuel line was measured about 32 cc after firing test and it was less than 2 cc within 10 seconds purging. To simulate the end of line, the residual gasoline in the fuel line was purged during 5 and 10 seconds. Start time of LPI engine with LPG fuel were 0.61 and 0.58 seconds. This work showed that severe problems such as misfiring and liner scuffing were not occurred applying gasoline fuel to LPI engine.

바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성 (Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type)

  • 이진욱
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

2-stroke 가솔린 기관 성능 향상을 위한 추세 (Trend for Performance Improvement of 2-Stroke Gasoline Engine)

  • 김승수
    • 오토저널
    • /
    • 제9권2호
    • /
    • pp.1-4
    • /
    • 1987
  • 내연기관 연구에 전념하는 모든 사람들의 한결같은 3대 염원은 연비향상, 비출력증대 및 유해 배기가스 성분 감소이다. 이중 비과급 가솔린 기관의 경우 비출력 증대를 위한 4-stroke cycle 엔진에서의 여구는 현지까지 헤아릴 수 없이 많은 연구가 진행되어 발전의 한계에 도달한 느낌 이다. 따라서 이의 실질적인 증대는 시각을 달리하여 2-stroke cycle로의 전환으로서만 가능하리 라 본다. 2-stroke 엔진은 원래 이목적으로 고안된 것이라는 것은 주지의 사실이다. 그러나 이 장치가 비출력면에서 효과적인 가솔린엔진의 경우에서도 현재까지 별로 각광을 받지 못한 것은 다음과 같은 몇가지 두드러진 이유 때문이라고 본다. 첫째 흡입연료의 일부가 소기(scavenging) 과정에서 배기공으로 곧바로 유출됨으로 배기 공해성분을 증가시키고 연료손실에 따른 연비저감 을 초래하는 것이다. 둘째로 crankcase 소기를 이용하는 소형가솔린 2-stroke 엔진에서는 새 공 기의 흡입이 충분치 못하여 일방적으로 높지 않은 소기효율을 고려한 최종 흡입 체적효율은 상당 히 낮아지게 됨으로써 목적하는바의 비출력 증대의 득을 별로 얻지 못함은 물론 잔류가스율이 높아 저부하, 저속도에서 엔진의 구동이 손조롭지 못ㅎ하고 시동이 어려워지는 특성을 나타나게 된다. 따라서 이러한 바람직하지 못한 결과를 감수할 수 있는 경우에는 소형원동기에 주로 2-stroke 가솔린 엔진이 이용되어 왔다. 요사이 이러한 약점들을 타개할 수 있는 고안들이 미국 SAE지에 소개되어 관심을 끌고 있어 이에 대해 요저먹으로 소개하고자 한다.

  • PDF

엔진대상시험을 통한 텀블측정방식의 상관성 및 유의성에 관한 연구 (Correlations among Different Tumble Measuring Methods and Significance of Tumble Ratios from Steady Flow Rig on SI Engine Combustion)

  • 이시훈;김명진
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.43-49
    • /
    • 2006
  • Optimizing in-cylinder flow such as tumble or swirl is one of the key factors to develop better internal combustion engines. Especially, the tumble, which is more dominant flow in current high performance gasoline engines, has significant effects on the fuel consumptions and exhaust emissions under part load conditions. The first step for the tumble optimization is to find an accurate but cost-effective way to measure the tumble ratio. From this point of view, tumble ratios from three different measuring methods were compared and correlated in this research. Steady flow rig, water rig, and PIV were utilized for that purpose. Engine dynamometer test was also performed to find out the effect of the tumble. The results show that the tumble ratios from those methods are well correlated and that the steady flow rig is the effective method to measure the tumble despite its limitations.