• Title/Summary/Keyword: 가속주의(加速主義)

Search Result 47, Processing Time 0.023 seconds

Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy (양성자 치료 시 방사선 작업 종사자에게 미치는 방사선 피폭에 대한 평가)

  • Lee, Seung-Hyun;Jang, Yo-Jong;Kim, Tae-Yoon;Jeong, Do-Hyung;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Purpose: Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. Materials and Methods: The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. Results: As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Conclusion: Even a small amount of exposure will eventually increase cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  • PDF

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

NF-${\kappa}B$ Activation and cIAP Expression in Radiation-induced Cell Death of A549 Lung Cancer Cells (A549 폐암세포주의 방사선-유도성 세포사에서 NF-${\kappa}B$ 활성화 및 cIAP 발현)

  • Lee, Kye Young;Kwak, Shang-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.488-498
    • /
    • 2003
  • Background : Activation of the transcription factor NF-${\kappa}B$ has been shown to protect cells from tumor necrosis factor-alpha, chemotherapy, and radiation-induced apoptosis. NF-${\kappa}B$-dependent cIAP expression is a major antiapoptotic mechanism for that. NF-${\kappa}B$ activation and cIAP expression in A549 lung cancer cells which is relatively resistant to radiation-induced cell death were investigated for the mechanism of radioresistance. Materials and methods : We used A549 lung cancer cells and Clinac 1800C linear accelerator for radiation. Cell viability test was done by MTT assay. NF-${\kappa}B$ activation was tested by luciferase reporter gene assay, Western blot for $I{\kappa}B{\alpha}$ degradation, and electromobility shift assay. For blocking ${\kappa}B$, MG132 and transfection of $I{\kappa}B{\alpha}$-superrepressor plasmid construct were used. cIAP expression was analyzed by RT-PCR and cIAP2 promoter activity was performed using luciferase assay system. Results : MTT assay showed that cytotoxicity even 48 hr after radiation in A549 cells were less than 20%. Luciferas assay demonstrated weak NF-${\kappa}B$ activation of $1.6{\pm}0.2$ fold compared to PMA-induced $3.4{\pm}0.9$ fold. Radiation-induced $I{\kappa}B{\alpha}$ degradation was observed in Western blot and NF-${\kappa}B$ DNA binding was confirmed by EMSA. However, blocking NF-${\kappa}B$ using MG132 and $I{\kappa}B{\alpha}$-superrepressor transfection did not show any sensitizing effect for radiation-induced cell death. The result of RT-PCR for cIAP1 & 2 expression was negative induction while TNF-${\alpha}$ showed strong expression for cIAP1 & 2. The cIAP2 promoter activity also did not show any change compared to positive control with TNF-${\alpha}$. Conclusion : We conclude that activation of NF-${\kappa}B$ does not determine the intrinsic radiosensitivity of cancer cells, at least for the cell lines tested in this study.

Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity (공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교)

  • Kim, Yon-Lae;Suh, Tae-Suk;Ko, Shin-Gwan;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • This study is compared that the dose distribution by experimentation and radiation therapy planning (RTP) when the air cavity region was treated high energy photon. The dose measurements were performed with a 6 MV photon beam of linear accelerator. The polystyrene and self made acyl phantom were similar to tissue density of the human body. A parallel plate chamber was connected to an electrometer. The measurement setup was SCD (Source Chamber Distance) 100 cm and the distance of surface from air cavity was 3 cm. Absorbed dose of interface were measured by area and height. The percent depth dose were measured presence and absence of air cavity, depth according to a ratio of field size and air cavity size. The dose distribution on planning was expressed to do the inhomogeneity correction. As the area of air cavity was increased, the absorbed dose were gradually reduced. It was slightly increased, when the height of air cavity was changed from 0 cm to 0.5 cm. After the point, dose was decreased. In case of presence of air cavity, dose after distal air cavity interface was more great than absence of air cavity. The rebuild up by field size and area of air cavity occurred for field size, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$ and $6{\times}6\;cm^2$, with fixed on area of air cavity, $5{\times}5\;cm^2$. But it didn't occur at $10{\times}10\;cm^2$ field size. On the contrary, the field size was fixed on $5{\times}5\;cm^2$, rebuild up occurred in area of air cavity, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$. but, it did not occur for air cavity, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$. All of the radiation therapy planning were not occurred rebuild up. It was required to pay attention to treat tumor in air cavity because the dose distribution of planning was different from the dose distribution of patient.

Anti-tumor Effect of Combined Betacarotene with X-irradiation in the Mouse Fibrosarcoma : Cytotoxicity and Tumor Growth Delay (쥐 섬유육종에서 베타카로틴과 방사선조사 병용의 항종양 효과: 세포독성 및 종양성장 지연에 미치는 영향)

  • Kwon Hyoung-Cheol;Yang Moon-Sik
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • Purpose :To investigate whether combined beta-carotene with X-Irradiation has more enhanced radition response than X-irradiation or not, we peformed a experiment about in vitro cytotoxlcity of beta-carotene and/or X-irradiation in the fibrosarcoma cells, tumor growth delay of combined beta-caroten with/or X-irradiation in the mouse fibrosarcoma. Materials and Methods : 2$\%$ emulsion of beta-carotene was serially diluted and used. X-Irradiation was given by 6 MeV linear accelerator. The cytotoxicity of beta-carotene in vitro was evaluated from clonogenic assay. To compare the cytotoxiclty between combined beta-carotene with X-irradiation and X-irradiation group, 2 mg/ml of beta-carotene was contacted to fibrosarcoma (FSall) cells for 1 hour before X-irradiation. For the tumor growth delay, single 20 Gy was given to FSall tumor hearing C3H/N mice whic was classified as beta-crotene with X-irradiation group (n=5) and X-irradiation alone group (n=5). 0.2 ml of 20 mg/kg of beta-carotene were i.p. injected to mice 30 minute before X-irradiation in the beta-crotene with X-irradiation group. The tumor growth delay defined as the time which reach to 1,000 mm$^{3}$ of tumor volume. Results : (1) Cytotoxicity in vitro: 1) survival fraction at beta-carotene concentration of 0.002,0.02,0.2 and 2 mg/ml were 0.69$\pm$0.07, 0.59$\pm$0.08, 0.08$\pm$0.008 and 0.02$\pm$0.006, respectively. 2) each survival fraction at 2, 4, 6 and 8 Gy in the 2 mg/ml of beta-carotene + X-irradiation group were 0.13$\pm$0.05, 0.03$\pm$0.005, 0.01 $\pm$0.002 and 0.009$\pm$0.0008, respectively. But each survival fraction at same irradiation dose in the X-irradiation group were 0.66$\pm$0.05, 0.40$\pm$0.04, 0.11$\pm$0.01 and 0.03$\pm$0.006, respectively(p<0.05). (2) The time which reach to 1,000 mm$^{3}$ of tumor volume of beta-carotene + X-irradiation group and X-irradiation alone group were 18, 19 days, respectively(p>0.05) Conclusion : The contact of beta-caroten to Fsall cells showed mild cytotoxicity which 띤as increased according to concentration. The cytotoxicity of combined beta-carotene with X-irradiation more increased than that of X-irradiation, additionally, And there was significant difference of cytotoxicity between two groups. But there were no significant difference of the growth delay of fibrosarcoma between two groups.

  • PDF