• Title/Summary/Keyword: 가속열화

Search Result 306, Processing Time 0.024 seconds

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

Effect of Sintering Temperature on Electrical and Dielectric Behavior of Pr6O1-Based ZnO Varistors with DC Accelerated Aging Stress (Pr6O1계 ZnO 바리스터의 DC 가속열화 스트레스에 따른 전기적, 유전적 거동에 미치는 소결온도의 영향)

  • 남춘우;정영철;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.244-252
    • /
    • 2002
  • The electrical and dielectric behavior fort DC accelerated aging stress of P $r_{6}$ $O_{11}$-based Zno varistors cnsisting of ZnO-P $r_{6}$ $O_{11}$-CoO-C $r_2$ $O_3$-E $r_2$ $O_3$ were investigated with sintering temperature in the range of 1325~1345$^{\circ}C$. The varistor ceramics with increasing sintering temperature were more densified. A more densified varistors leaded to high stability for DC accelerated aging stress. Furthermore, the stability for DC accelerated aging stress was increased with the leakage current and dtan $\delta$/dV decreasing in order of 1325longrightarrow1335longrightarrow1345longrightarrow134$0^{\circ}C$ in sintering temperature. It was found that the stability for DC stress is affected more greatly by the leakage current and dtan $\delta$/dV than the densification. It is considered that the stability of varistors for DC stress can be estimated by considering the factors, such as the densification, leakage current, and dtan $\delta$/dV. As a result, the varistor sintered at 134$0^{\circ}C$ exhibited the highest stability, with %$\Delta$ $V_{lmA}$=-1.54%, %$\Delta$$\alpha$=-2.49%, %$\Delta$ $I_{\ell}$=+240.68%, 5%$\Delta$tan$\delta$=+29.96%.96%.96%.%.

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

Aging Characteristics of Carbon Fiber/Epoxy Composite Ring Specimen (탄소섬유/에폭시 복합재 링 시편의 노화 특성 평가)

  • Yoon, Sung-Ho;Oh, Jin-Oh
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • The effect of exposure times on the aging characteristics of carbon fiber/epoxy composite ring specimen was evaluated using an accelerating aging tester. Combined exposure conditions, such as temperature, moisture, and ultraviolet, were applied up to 3000 hours. Tensile properties and flexural properties including the effect of curvature were evaluated on the specimens subject to various exposure times through a material testing system. Their aging surfaces were observed through a scanning electron microscope. According to the results, tensile modulus was little affected by the exposure times. However, tensile strength, at the early stage of the exposure times, increased due to physical aging and curing reaction, but tensile strength slightly decreased due to degradation as the exposure times increased. The flexural modulus and flexural strength increased at the early stage of the exposure times, but slightly decreased as the exposure times increased. Aging surfaces of the specimens examined using the scanning electron microscope revealed a different morphology in various exposure times and provided useful information for identifying the degradation in mechanical properties of the composite subject to various exposure times.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Study on VOCs Emission Characteristic of Taxidermied Mounting Techniques (박제표본 제작방법에 따른 휘발성유기화합물 방출 특성 연구)

  • OH Jungwoo;CHUNG Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.136-146
    • /
    • 2023
  • Biological materials, such as stuffed specimens, can release various acids or volatiles. There has been no research carried out on the emission characteristics of organic compounds generated from the preservatives used in taxidermy specimens or associated manufacturing materials and methods. Therefore, in order to identify the organic compounds generated from taxidermy specimens, a degradation experiment was conducted on specimens for each material and for storage specimens. To produce Ogye chicken specimens, naphthalene and borax were used as preservatives, and planer sawdust, newspaper, and polystyrene foam were used as the core body materials. The deterioration experiment was conducted for 2 weeks in a high-temperature environment(50℃) and a high-humidity environment (95%), with an Ogye chicken specimen (year 2015) kept in an animal storage facility. Results indicated that the concentration of organic compounds generated by the specimen in the high-temperature environment tended to be greater than that in the high-humidity environment. The preservatives benzene, toluene, xylene, and p-dichlorobenzene were detected in the specimens using naphthalene, confirming that naphthalene is a major organic compound release factor, and the specimens that used sawdust, newspaper, and polystyrene foam also exhibited organic compounds. This appears to have been due to degradation of the material. In addition, ammonia was detected in the specimens for each material due to decay. In particular, the specimens using borax at high temperature were subject to approximately 9 times higher rates of ammonia-related deterioration than the specimens using naphthalene. These results can be considered to result from the prevention of biological damage through insecticidal effects by accelerating the sublimation of naphthalene in a high-temperature environment. Naphthalene is a potentially carcinogenic substance, and when used as a preservative, proper use management is required. Taxidermy specimens can release various organic compounds depending on the manufacturing techniques used, so a systematic preservation management plan is required that depends on conditions such as the applicable manufacturing materials and preservatives.

DC Accelerated Aging Characteristics of Praseodymium-Based ZnO Varistors Doped with $Dy_2O_3$ ($Dy_2O_3$가 첨가된 프라세오디뮴계 ZnO 바리스터의 DC 가속열화특성)

  • Ryu, Jung-Sun;Jung, Young-Chul;Kim, Hyang-Suk;Nahm, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.78-80
    • /
    • 2001
  • DC accelerating aging characteristics of praseodymium-based ZnO varistors doped with $Dy_2O_3$ were investigated with sintering time. The varistor sintered for 1h exhibited the highest nonlinearity, with a nonlinear exponent of 66.61 and a leakage current of $1.16{\mu}A$, whereas they did not exhibit relatively high stability. The varistor sintered for 2h having nonlinear exponent of 54.81 and leakage current of $2.52{\mu}A$ showed very excellent stability, which the variation rates of varistor voltage, nonlinear exponent, and leakage current are -1.19%, -4.00%, and +75.79% for 2h, under DC accelerated aging stress, such as ($0.85\;V_{1mA}/115^{\circ}C$/24h)+($0.90\;V_{1mA}/120^{\circ}C$/24h)+($0.95\;V_{1mA}/125^{\circ}C$/24h)+($0.95\;V_{1mA}/150^{\circ}C$/24h).

  • PDF

Study on Accelerated Aging Characteristics of Paper-Records by Air Pollutants (종이 기록물의 대기 중 유해물질에 의한 가속 열화 특성 연구)

  • Park, Mi-Seon;Jeong, So-Yoon;Hwang, Ji-Hyun;Kim, Hyoung-Jin;Kim, Shin-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.76-84
    • /
    • 2014
  • Preventive conservation is one of most important issues in the field of conservation for paper-records. Many researchers have been studied environmental factors such as effects of humidity, temperature, biological attack and air pollutants. Air pollutants strongly associated with oxidative and hydrolytic degradation of cellulose. It is important to control air pollutants in storage environment to improve stabilities of conservation environment. Four paper samples have been analyzed for their accelerated aging characteristics by air pollutants, sulfur dioxide, nitrogen dioxide, ozone, carbon monoxide. Physical and optical properties and weight molar masses(Mw) showed that interactions between air pollutants and paper sample. Nitrogen dioxide, ozone caused severe damage to cellulose in paper by hydrolytic and oxidative decompositions during aging.

A Study on the Effects of Contaminant Types on the Wear Degradation Characteristics in Internal Gear Pumps (불순물 입자의 유형에 따른 내접기어 펌프에서의 마모열화 특성 연구)

  • Shin, Jung-Hun;Ji, Kyung-Ryeol;Kim, Hyoung-Eui
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • The mechanical equipments which are exposed to impure environment undergo significant reductions in their own lifetimes. Several environmental test procedures have been developed to analyze these phenomena. Moreover in the industry to require shorter development duration, accelerated life testers artificially add test containments into machines. In this research JIS Z 8901 test powder was added into internal gear pumps which are used as oil pumps in vehicles and thus the effects of the addition on the degradation of the pumps were examined. Three kinds of contaminants were selected. Two of the contaminants are identical in particle size but different in the composition of the ingredients. The other pair have identical ingredients and composition but different particle size. The quantity of contaminants was also an interesting factor in this study. The results show that each JIS contaminant caused notable degradation in the discharge flow characteristic of pumps while friction torque degradation did not have any tendency. Finally leakage rates were deduced and equivalent wear volume ratios were calculated.

An Accelerated Degradation Test of Electric Double-Layer Capacitors (전기이중층커패시터의 가속열화시험)

  • Jung, Jae-Han;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.