• Title/Summary/Keyword: 가속도계 위치

Search Result 80, Processing Time 0.025 seconds

Estimation of Kinematic Soil-Structure Interaction for Deeply Embedded Foundations (깊은 직접기초의 지반-구조물 상호작용 평가)

  • Kim Seng-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.105-111
    • /
    • 2006
  • Earthquake strong motion recordings from two deeply embedded sites with instrumented structures and free-field accelerographs are used to evaluate variations between foundation-level and free-field ground motions. The foundation free-field ground motion variations are quantified in terms of frequency-dependent transmissibility function amplitude, ${\mid}H\mid$. Comparisons are then performed with an analytical model for the assumed conditions of a rigid base slab and a vertically propagating, coherent incident wave. The limiting assumptions of the model are not strictly satisfactory for actual structures, and the results of the analysis reflect not only incoherence effects, but also possible foundation flexibility and wave inclination effects. Nonetheless, the simple analytical model is in an acceptable agreement with the empirical analysis and appears to be applicable in practice.

Evaluation of Low-cost MEMS Acceleration Sensors to Detect Earthquakes

  • Lee, Jangsoo;Kwon, Young-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.73-79
    • /
    • 2020
  • As the number of earthquakes gradually increases on the Korean Peninsula, much research has been actively conducted to detect earthquakes quickly and accurately. Because traditional seismic stations are expensive to install and operate, recent research is currently being conducted to detect earthquakes using low-cost MEMS sensors. In this article, we evaluate how a low-cost MEMS acceleration sensor installed in a smartphone can be used to detect earthquakes. To this end, we installed about 280 smartphones at various locations in Korea to collect acceleration data and then assessed the installed sensors' noise floor through PSD calculation. The noise floor computed from PSD determines the magnitude of the earthquake that the installed MEMS acceleration sensors can detect. For the last few months of real operation, we collected acceleration data from 200 smartphones among 280 installed smartphones and then computed their PSDs. Based on our experiments, the MEMS acceleration sensor installed in the smartphone is capable of observing and detecting earthquakes with a magnitude 3.5 or more occurring within 10km from an epic center. During the last several months of operation, the smartphone acceleration sensor recorded an earthquake of magnitude 3.5 in Miryang on December 30, 2019, and it was confirmed as an earthquake using STA/LTA which is a simple earthquake detection algorithm. The earthquake detection system using MEMS acceleration sensors is expected to be able to detect increasing earthquakes more quickly and accurately.

A Study on the Estimation Accuracy of Energy Expenditure by Different Attaching Position of Accelerometer (가속도계의 부착위치에 따른 에너지 소비량의 예측 정확도에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Mun, Kyung-Ryoul;Bang, Yun-Hwa;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.179-186
    • /
    • 2009
  • This works studied to compare gas analyzer with accelerometer and the estimation of energy expenditure based on different attaching position of tri-axial accelerometer such as waist and top of the foot Based on the fact that oxygen intake increases more radically linearly during walking more than 8.0km/hr. 9 male subjects performed walking and running on the treadmill with speed of $1.5{\sim}8.5km$/hr and $4.5{\sim}13.0km$/hr, respectively. Commercially available Nike + iPod Sports kit was used to compare energy expenditure with sensor module attached to their foot. Actual energy expenditure was determined by a continuous direct gas analyzer and two multiple regression equations of walking and running mode for different attaching position were developed. Results showed that estimation accuracy of energy expenditure using waist mounted accelerometer was higher than that of the top of the foot and Nike + iPod Sports kit. Results of energy expenditure based on waist and top of the foot showed that the crossover state of energy expenditure occurred at 7.5km/hr. But Nike + iPod Sports kit could not find intersection of energy expenditure in all nine subjects. Therefore the sensor module attached to the waist and separate multi regression equation by walking and running mode was the best to estimate more accurate prediction.

Vibration Characteristics and Drop Impacts of Bear Glass Bottles During Truck Transit (트럭 운송시 맥주용 유리병의 진동 및 낙하 특성)

  • Park, Su-Il;Park, In-Sik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.77-81
    • /
    • 2009
  • There has been an increasing demand on measurement of the vibration levels in commercial truck shipments, where all packaged products are exposed to some levels of random vibration and shock. In this study, bear glass bottles loaded at the front, middle, and rear positions of 11 tonne truck bed was shipped from Kwangju to Waegouan. Vertical direction vibration levels were analysed and matching laboratory random vibration test was performed using power spectral density (PSD) profiles derived from truck transit records. Also, the effects of drop hight on glass bottles were evaluated. As expected, the maximum vibration levels were recorded at the rear of truck bed. No breakage of bottles were observed during truck transit and laboratory random vibration testing set at 0.52 $G_{rms}$. In drop test, glass bottles were not damaged by bottom side impact, while short side drop impact caused about twice higher bottle breakage rate than that of long side drop impact at 30 cm and 40 cm drop hight.

  • PDF

Vibration Intensity Method to Detect Vibration Source of Rotary Compressor (로터리 컴프레서 진동원 검출을 위한 인텐시티 기법)

  • Kim, Heui-Cheol;Lee, Dong-Yeon;Yi, Hwa-Cho;Shim, Jae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3398-3405
    • /
    • 2011
  • Vibration intensity (VI) method is used to reduce sound source generated from air-conditioning rotary compressor. Generally VI method is a good tool to find a sound source through vibration power flow. In this paper, the vibrations are measured by using the 3 uni-axial accelerometer from both the shells of the normal compressor and the fault compressor. The VI method successfully found out the sound source position on the surface of the compressor. In addition, the main noise (3kHz ~ 6.3kHz) was deminished by applying the newly designed compressor inner part which is related to the orginal noise source.

Investigation of Error Factors from an Impact Hammer Test for Developing a Statistic Based Technique for Model Updating (통계 기반 모델 개선을 위한 임팩트 해머 실험의 오차 요인 분석)

  • Lee, Su;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.185-198
    • /
    • 2016
  • In this work, experimental errors from an impact hammer test were investigated to develop a statistic-based technique for updating a finite element model. Digital signal processing was analyzed by using theoretical models and experiments when errors occurred during the experimental procedure. First, the duration time and peak level of the excitation signal, the stiffness and position of elastic springs connecting the specimen as well as the support, position and mass of the accelerometer were considered as error factors during the experiment. Then the picket fence effect, leakage, and exponential window function were considered as candidate error factors during the digital signal processing. Finally, methods to reduce errors are suggested.

A Study of Kalman Filter Adaptation for Protecting Aquaculture Farms (양식어장보호를 위한 칼만필터 적용에 관한 연구)

  • Nam, Taek-Kun;Jeong, Jung-Sik;Jong, Jae-Yong;Yang, Won-Jae;Ahn, Young-Sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.273-277
    • /
    • 2005
  • In this paper, we study on adaptation of the kalman filter for FDS(fishery detection system) to protect and aquaculture farms. The FDS will detect a robbing vessel with real time and a variance of the position of fishing fields. The kalman filter for tracking system that can be detect and track the approaching object without mounting F-AIS(Fishery Automatic Identification System) is applied. Some simulation results for the acceleration object with white noise is showed and the possibility of adaptation for tracking system is discussed.

  • PDF

Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response (PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링)

  • Ho, Duc-Duy;Lee, Po-Young;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • The main objective of this study is to examine the feasibility of using lead zirconate titanate (PZT)'s direct piezoelectric response as vibrational feature for damage monitoring in beam structures. For the purpose, modal strain energy (MSE)-based damage monitoring in beam structures using dynamic strain response based on the direct piezoelectric effect of PZT sensor is proposed in this paper. The following approaches are used to achieve the objective. First, the theoretical background of PZT's direct piezoelectric effect for dynamic strain response is presented. Next, the damage monitoring method that utilizes the change in MSE to locate of damage in beam structures is outlined. For validation, forced vibration tests are carried out on lab-scale cantilever beam. For several damage scenarios, dynamic responses are measured by three different sensor types (accelerometer, PZT sensor and electrical strain gage) and damage monitoring tasks are performed thereafter. The performance of PZT's direct piezoelectric response for MSE-based damage monitoring is evaluated by comparing the damage localization results from the three sensor types.

Guidance Filter Design Based on Strapdown Seeker and MEMS Sensors (스트랩다운 탐색기 및 MEMS 센서를 이용한 유도필터 설계)

  • Yun, Joong-Sup;Ryoo, Chang-Kyung;Song, Taek-Lyul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1002-1009
    • /
    • 2009
  • Precision guidance filter design for a tactical missile with a strapdown seeker aided by low-cost strapdown sensors has been addressed in this paper. The low-cost strapdown sensors consist of an IMU with 3-axis accelerometers and gyroscopes, 3-axis magnetometers, and a barometer. Missile's position, velocity, attitude, and bias error of the barometer are considered as state variables. Since the state and measurement equations are highly nonlinear, we adopt UKF(Unscented Kalman Filter). The proposed guidance filter has a function of a navigation filter if target position error is not considered. In the case that the target position error is introduced, the proposed filter can effectively estimate the relative states of the missile to the true target. For specific engagement scenarios, we can observe that observability problems occur.

Evaluation and Selection of MEMS-Based Inertial Sensor to Implement Inertial Measurement Unit for a Small-Sized Vessel (소형 선박용 관성측정장치 개발을 위한 MEMS 기반 관성 센서의 평가와 선정)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.785-791
    • /
    • 2011
  • This paper describes the evaluation and selection of MEMS(Micro-Elect Mechanical System) based inertial sensor to fit to implement the Inertial Measurement Unit(IMU) for a small-sized vessel at sea. At first, the error model and the noise model of the inertial sensors are defined with Euler's equations and then, the inertial sensor evaluation is carried out with Allan Variance techniques and Monte Carlo simulation. As evaluation results for the five sensors, ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH and ADXL103, the combination of gyroscope and accelerometer of ADIS16405 is shown minimum error having around 160 m/s standard deviation of velocity error and around 35 km standard deviation of position error after 600 seconds. Thus, we select the ADIS16405 inertial sensor as a MEMS-based inertial sensor to implement IMU and, the error reducing method is also considered with the search for reference papers.