• Title/Summary/Keyword: 가새좌굴

Search Result 59, Processing Time 0.02 seconds

A Story-wise Distribution of Hysteretic Energy in Buckling-Restrained Braced Frames (비좌굴 가새골조의 층별 이력에너지 분포)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.286-293
    • /
    • 2003
  • In this study a story-wise distribution of hysteretic energy in multi-story steel moment-resisting framse (MRE), buckling restrained braced frames (BRBF-R), and hinge-connected framed structures with buckling restrained braces (BRBF-H) subjected to various earthquake ground excitations was investigated. According to analysis results the hysteretic energy in MRF and BRBF-R turned out to be the maximum at the base and monotonically diminishes with increasing height. In top stories the plastic deformation of members is almost negligible. However the story-wise distribution of hysteretic energy in BRBF-H was relatively uniform over the height of the structure. This is considered to be more desirable because damage is not concentrated in a single story.

  • PDF

Seismic Performance Evaluation of Tube Systems with Buckling Restrained Braces (비좌굴 가새가 설치된 튜브 시스템의 내진성능 평가)

  • Yang, Jung-Ho;Lee, Joon-Ho;Kim, Jin-Koo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.191-197
    • /
    • 2006
  • In this paper 35- and 72-story tube system and trussed tube system were designed and their seismic performances were evaluated by nonlinear static analysis. According to the analysis results, the tube system structures retained high stiffness and strength; however they showed brittle failure mode due to the yielding of columns. In the case of trussed tube system, columns in the side-side buckled first followed by the buckling of the braces. When buckling-restrained braces were applied, plastic hinges formed in the lower stories gradually spreads to the higher stories, resulting in ductile behavior.

  • PDF

Structural Performance Test according to Initial shape design of PF-BRB (조립식 좌굴방지가새형 이력댐퍼의 초기형상설계에 따른 구조성능실험)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.

Development of a Flexure Yielding Steel Damper for Concentrically Braced Frames (중심가새골조의 내진성능향상을 위한 휨항복댐퍼의 개발)

  • Seong-Hoon, Jeong;Ali, Ghamari
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.381-386
    • /
    • 2022
  • This paper details the analytical and experimental studies performed to propose a steel damper based on the flexural yielding mechanism. The damper is composed of a set of damping plates that are designed to yield in flexure. The comparison of experimental and finite element analysis results indicate that the analytical approach adopted in this study should be appropriate to perform sensitivity studies on the geometries of the damping plates. Although the damper is originally proposed to work based on the flexural mechanism, it is observed that the contribution of the tensile behavior of the damping plate could be considerable. As the thickness of the damping plate increases, the plastic energy due to the flexural yield increases. As the thickness of the damping plate decreases, the contribution of the tensile behavior increases, and the shape of the hysteresis loop distorts.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

A Fundamental Study of Performance Based Seismic Design on the Large Span Structures: The Characteristics of Elasto-Plastic Earthquake Responses of a Steel Frame with Membrane Roof (공간구조물의 성능기초 내진설계에 관한 기초연구: 강구조 골조막 구조의 탄소성 지진응답특성)

  • Nakazawa, Shoji;Cheong, Myung-Chae;Kato, Shi;Yoshino, Tatsuya;Oda, Kenshi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.35-44
    • /
    • 2007
  • The characteristics of elasto-plastic responses of a gymnasium building which is a steel braced frame with membrane roof is discussed as a basic research on the performance based seismic design of large span structures, in this paper. Under the strong earthquake motions, the formation of plastic hinges on braces attached by the bottom frame make reduce down the stresses and displacements of upper structures, and vertical acceleration of the membrane is tend to increase but maximum response of strain and corresponding stresses are tend to be reduced.

  • PDF

Seismic Retrofit of Spatial Structures Using Buckling Restrained Brace (비좌굴 가새를 이용한 대공간 구조물 내진 보강 설계)

  • Moon, Hee-Suk;Kim, Gee-Chul;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.105-111
    • /
    • 2018
  • In this study, the seismic performance and behavior characteristics of the upper truss structure of the large stadium are analyzed by nonlinear dynamic analysis. In the nonlinear dynamic analysis, the earthquake records were generated by site response analysis to simulate the nonlinear behavior of the relevant soil condition where the structure is located. Nonlinear dynamic analysis was performed using Perform-3D and the nonlinear properties of the substructure and the superstructure were determined in accordance with KISTEC guideline. According to the analysis results, excessive deformation occurred in the upper truss element, and plastic hinges exceeded the target performance in some members. Buckling-restrained brace is used for seismic retrofit of stadium structures and the analysis results shows the interstory drift satisfies the target performance level with dissipating the seismic energy efficiently.

Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method (횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Analysis of Damping Performance of Hysteretic Dampers of Buckling restrained Braced Type According to eccentricity of school buildings with Torsional irregularities (비틀림 비정형을 가지는 학교건물의 편심율에 따른 좌굴방지가새형 이력댐퍼의 제진성능분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2023
  • In the case of a school building, even though it is a regular structure in terms of plan shape, if the masonry infill wall acts as a lateral load resisting element, it can be determined as a torsionally irregular building. As a result, the strength and ductility of the structure are reduced, which may cause additional earthquake damage to the structure. Therefore, in this study, a structure similar to a school building with torsional irregularity was selected as an example structure and the damping performance of the PC-BRB was analyzed by adjusting the eccentricity according to the amount of masonry infilled wall. As a result of nonlinear dynamic analysis after seismic reinforcement, the torsional irregularity of each floor was reduced compared to before reinforcement, and the beams and column members of the collapse level satisfied the performance level due to the reduction of shear force and the reinforcement of stiffness. The energy dissipation of PC-BRB was similar in the REC-10 ~ REC-20 analytical models with an eccentricity of 20% or less. REC-25 with an eccentricity of 25% was the largest, and it is judged that it is effective to combine and apply PC-BRB when it has an eccentricity of 25% or more to control the torsional behavior.