• Title/Summary/Keyword: 가상 물체

Search Result 341, Processing Time 0.027 seconds

Plane-based Computational Integral Imaging Reconstruction Method of Three-Dimensional Images based on Round-type Mapping Model (원형 매핑 모델에 기초한 3차원 영상의 평면기반 컴퓨터 집적 영상 재생 방식)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.991-996
    • /
    • 2007
  • Recently, a computational reconstruction method using an integral imaging technique, which is a promise three-dimensional display technique, has been actively researched. This method is that 3-D images can be digitally reconstructed at the required output planes by superposition of all of the inversely enlarged elemental images by using a hypothetical pinhole array model. However, the conventional method mostly yields reconstructed images having a low-resolution, because there are some intensity irregularities with a grid structure at the reconstructed mage plane by using square-type elemental images. In this paper, to overcome this problem, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIR method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resolution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

Privacy-preserving Proptech using Domain Adaptation in Metaverse (메타버스 내 원격 부동산 중계 시스템을 위한 부동산 매물 영상 내 민감정보 삭제 기술)

  • Junho Kim;Jinhong Kim;Byeongjun Kang;Jaewon Choi;Jihoon Kim;Dongwoo Kang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.187-190
    • /
    • 2022
  • 본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.

  • PDF

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Task-Visual Information Map to Develop AR Navigators of Construction Equipment (건설장비 AR 네비게이터 개발을 위한 작업-시각정보 맵 도출)

  • Song, Sujin;Kang, Hojun;Kim, Hanbeen;Moon, Taenam;Shin, Do Hyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.116-124
    • /
    • 2016
  • Work efficiency of earth work which is one of the main works occurring in construction site mainly depends on the performance of individual operators of earth work equipment. Consequently, the skill of individual operators of earth work equipment can significantly affect overall construction schedules. Many invisible areas inevitably exist in construction site because of the nature of construction site where occlusions occur from structures being built, installed or moving equipment, moving workers, etc. The lack of visual information regarding tasks critically impedes the effective performance of operators of earth work equipment. AR (Augmented Reality) is a computer technology that superimposes virtual objects onto the real world scene. This characteristic of AR may address the lack of visual informations in earth work process, thus helping to improve the work efficiency of operators of earth work equipment. The purpose of this study is to present a task-visual information map that identifies visual informations required in tasks of earth work and which of the tasks are suitable for AR technology. This study focuses on visual informations in tasks of earth work with excavators. The map was created based on the investigations on the problems of each task of earth work with excavators and visual informations required to address the problems. Through the map, four visual informations were found to be suitable for AR technology to improve the work efficiency of excavator operators. Based on the findings of this study, AR systems for excavators can be developed more effectively.

Vision-based Motion Control for the Immersive Interaction with a Mobile Augmented Reality Object (모바일 증강현실 물체와 몰입형 상호작용을 위한 비전기반 동작제어)

  • Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 2011
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. Especially, recent increasing demands for mobile augmented reality require the development of efficient interactive technologies between the augmented virtual object and users. This paper presents a novel approach to construct marker-less mobile augmented reality object and control the object. Replacing a traditional market, the human hand interface is used for marker-less mobile augmented reality system. In order to implement the marker-less mobile augmented system in the limited resources of mobile device compared with the desktop environments, we proposed a method to extract an optimal hand region which plays a role of the marker and augment object in a realtime fashion by using the camera attached on mobile device. The optimal hand region detection can be composed of detecting hand region with YCbCr skin color model and extracting the optimal rectangle region with Rotating Calipers Algorithm. The extracted optimal rectangle region takes a role of traditional marker. The proposed method resolved the problem of missing the track of fingertips when the hand is rotated or occluded in the hand marker system. From the experiment, we can prove that the proposed framework can effectively construct and control the augmented virtual object in the mobile environments.

A Study on Compensation of Disparity for Incorrect 3D Depth in the Triple Fresnel Lenses floating Image System (심중 프렌넬 렌즈 시스템에서 재생된 입체부양영상의 올바른 깊이감을 구현하기 위한 시차보정 방법에 대한 연구)

  • Lee, K.H.;Kim, S.H.;Yoon, Y.S.;Kim, S.K.
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.246-255
    • /
    • 2007
  • The floating image system (FIS) is a device to display input source in the space between fast surface of the display and an observer and it provides pseudo 3D depth to an observer when input source as real object or 2D image was displayed through the optical lens system in the FIS. The Advanced floating image system (AFIS) was designed to give more effective 3D depth than existing FIS by adding front and rear depth cues to the displayed stereogram, which it was used as input source. The magnitude of disparity and size of stereogram were strongly related each other and they have been optimized for presenting 3D depths in a non-optical lens systems. Thus, if they were used in optical lens system, they will have reduced or magnified parameters, leading to problem such as providing incorrect 3D depth cues to an observer. Although the size of stereogram and disparity were demagnified by total magnifying power of optical system, the viewing distance (VD) from the display to an observer and base distance (BD) for the gap between the eyes were fixed. For this reason, the quantity of disparity in displayed stereogram through the existing FIS has not kept the magnifying power to the total optical system. Therefore, we proposed the methods to provide correct 3D depth to an observer by compensating quantity of disparity in stereogram which was satisfied to keep total magnifying power of optical lenses system by AFIS. Consequently, the AFIS provides a good floating depth (pseudo 3D) with correct front and rear 3D depth cues to an observer.

Image Mosaicking Using Feature Points Based on Color-invariant (칼라 불변 기반의 특징점을 이용한 영상 모자이킹)

  • Kwon, Oh-Seol;Lee, Dong-Chang;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • In the field of computer vision, image mosaicking is a common method for effectively increasing restricted the field of view of a camera by combining a set of separate images into a single seamless image. Image mosaicking based on feature points has recently been a focus of research because of simple estimation for geometric transformation regardless distortions and differences of intensity generating by motion of a camera in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.

Drone-mounted fruit recognition algorithm and harvesting mechanism for automatic fruit harvesting (자동 과일 수확을 위한 드론 탑재형 과일 인식 알고리즘 및 수확 메커니즘)

  • Joo, Kiyoung;Hwang, Bohyun;Lee, Sangmin;Kim, Byungkyu;Baek, Joong-Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • The role of drones has been expanded to various fields such as agriculture, construction, and logistics. In particular, agriculture drones are emerging as an effective alternative to solve the problem of labor shortage and reduce the input cost. In this study therefore, we proposed the fruit recognition algorithm and harvesting mechanism for fruit harvesting drone system that can safely harvest fruits at high positions. In the fruit recognition algorithm, we employ "You-Only-Look-Once" which is a deep learning-based object detection algorithm and verify its feasibility by establishing a virtual simulation environment. In addition, we propose the fruit harvesting mechanism which can be operated by a single driving motor. The rotational motion of the motor is converted into a linear motion by the scotch yoke, and the opened gripper moves forward, grips a fruit and rotates it for harvesting. The feasibility of the proposed mechanism is verified by performing Multi-body dynamics analysis.

A Study on Metaverse Framework Design for Education and Training of Hydrogen Fuel Cell Engineers (수소 연료전지 엔지니어 양성을 위한 메타버스 교육훈련 플랫폼에 관한 연구)

  • Yang Zhen;Kyung Min Gwak;Young J. Rho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • The importance of hydrogen fuel cells continues to be emphasized, and there is a growing demand for education and training in this field. Among various educational environments, metaverse education is opening a new era of change in the global education industry, especially to adapt to remote learning. The most significant change that the metaverse has brought to education is the shift from one-way, instructor-centered, and static teaching approaches to multi-directional and dynamic ones. It is expected that the metaverse can be effectively utilized in hydrogen fuel cell engineer education, not only enhancing the effectiveness of education by enabling learning and training anytime, anywhere but also reducing costs associated with engineering education.In this research, inspired by these ideas, we are designing a fuel cell education platform. We have created a platform that combines theoretical and practical training using the metaverse. Key aspects of this research include the development of educational training content to increase learner engagement, the configuration of user interfaces for improved usability, the creation of environments for interacting with objects in the virtual world, and support for convergence services in the form of digital twins.

f-MRI with Three-Dimensional Visual Stimulation (삼차원 시각 자극을 이용한 f-MRI 연구)

  • Kim C.Y.;Park H.J.;Oh S.J.;Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Purpose : Instead of conventional two-dimensional (2-D) visual stimuli, three-dimensional (3-D) visual stimuli with stereoscopic vision were employed for the study of functional Magnetic Resonance Imaging (f-MRI). In this paper f-MRI with 3-D visual stimuli is investigated in comparison with f-MRI with 2-D visual stimuli. Materials and Methods : The anaglyph which generates stereoscopic vision by viewing color coded images with red-blue glasses is used for 3-D visual stimuli. Two-dimensional visual stimuli are also used for comparison. For healthy volunteers, f-MRI experiments were performed with 2-D and 3-D visual stimuli at 3.0 Tesla MRI system. Results : Occipital lobes were activated by the 3-D visual stimuli similarly as in the f-MRI with the conventional 2-D visual stimuli. The activated regions by the 3-D visual stimuli were, however, larger than those by the 2-D visual stimuli by $18\%$. Conclusion : Stereoscopic vision is the basis of the three-dimensional human perception. In this paper 3-D visual stimuli were applied using the anaglyph. Functional MRI was performed with 2-D and 3-D visual stimuli at 3.0 Tesla whole body MRI system. The occipital lobes activated by the 3-D visual stimuli appeared larger than those by the 2-D visual stimuli by about $18\%$. This is due to the more complex character of the 3-D human vision compared to 2-D vision. The f-MRI with 3-D visual stimuli may be useful in various fields using 3-D human vision such as virtual reality, 3-D display, and 3-D multimedia contents.

  • PDF