• Title/Summary/Keyword: 가상 그리드

Search Result 122, Processing Time 0.017 seconds

Minimizing the Risk of an Open Computing Environment Using the MAD Portfolio Optimization (최적포트폴리오 기법을 이용한 개방형 전산 환경의 안정성 확보에 관한 연구)

  • Kim, Hak-Jin;Park, Ji-Hyoun
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.15-31
    • /
    • 2009
  • The next generation IT environment is expected to be an open computing environment based on Grid computing technologies, which allow users to access to any type of computing resources through networks. The open computing environment has benefits in aspects of resource utilization, collaboration, flexibility and cost reduction. Due to the variation in performance of open computing resources, however, resource allocation simply based on users' budget and time constraints often fails to meet the Service Level Agreement(SLA). This paper proposes the Mean-Absolute Deviation(MAD) portfolio optimization approach, in which service brokers consider the uncertainty of performance of resources, and compose resource portfolios that minimize the uncertainty. In order to investigate the effect of this approach, we simulate an open computing environment with varying uncertainty levels, users' constraints, and brokers' optimization strategies. The simulation result concludes threefolds. First, the MAD portfolio optimization improves the success ratio of delivering the required performance to users. Second, the success ratio depends on the accuracy in predicting the variability of performance. Thirdly, the measured variability can also help service brokers expand their service to cost-critical users by discounting the access cost of open computing resources.

  • PDF

Frequency Stability Enhancement of Power System using BESS (BESS를 활용한 전력계통 주파수 안정도 향상)

  • Yoo, Seong-Soo;Kwak, Eun-Sup;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.595-606
    • /
    • 2022
  • Korea has the characteristics of traditional power system such as large-scale power generation and large-scale power transmission systems, including 20 GW large-scale power generation complexes in several regions with unit generator capacity exceeding 1.4 GW, 2-3 ultra-high-voltage transmission lines that transport power from large-scale power generation complexes, and 6 ultra-high-voltage transmission lines that transport power from non-metropolitan areas to the metropolitan area. Due to the characteristics of the power system, the penetration level for renewable energy is low, but due to frequency stability issue, some generators are reducing the output of generators. In the future, the issue of maintaining the stability of the power system is expected to emerge as the most important issue in accordance with the policy of expanding renewable energy. When non-inertial inverter-based renewable energy, such as solar and wind power, surges rapidly, the means to improve the power system stability in an independent system is to install a natural inertial resource synchronous condenser (SC) and a virtual inertial resource BESS in the system. In this study, we analyzed the effect of renewable energy on power system stability and the BESS effect to maintain the minimum frequency through a power system simulation. It was confirmed that the BESS effect according to the power generation constraint capacity reached a maximum of 122.81 %.