• Title/Summary/Keyword: 가비지 컬렉션 정책

Search Result 13, Processing Time 0.021 seconds

An Advanced Adaptive Garbage Collection Policy by Considering the Operation Characteristics (연산 특성을 고려한 향상된 적응적 가비지 컬렉션 정책)

  • Park, Song-Hwa;Lee, Jung-Hoon;Lee, Won-Oh;Kim, Hyun-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.269-277
    • /
    • 2018
  • NAND flash memory has widely been used because of non-volatility, low power consumption and fast access time. However, it suffers from inability to provide update-in-place and the erase cycle is limited. The unit of read/write operation is a page and the unit of erase operation is a block. Moreover erase operation is slower than other operations. We proposed the Adaptive Garbage Collection (called "AGC") policy which focuses on not only reducing garbage collection process time for real-time guarantee but also wear-leveling for a flash memory lifetime. The AGC performs better than Cost-benefit policy and Greedy policy. But the AGC does not consider the operation characteristics. So we proposed the Advanced Adaptive Garbage Collection (called "A-AGC") policy which considers the page write operation count and block erase operation count. The A-AGC reduces the write operations by considering the data update frequency and update data size. Also, it reduces the erase operations by considering the file fragmentation. We implemented the A-AGC policy and measured the performance compared with the AGC policy. Simulation results show that the A-AGC policy performs better than AGC, specially for append operation.

A Adaptive Garbage Collection Policy for Flash-Memory Storage System in Embedded Systems (실시간 시스템에서의 플래시 메모리 저장 장치를 위한 적응적 가비지 컬렉션 정책)

  • Park, Song-Hwa;Lee, Jung-Hoon;Lee, Won-Oh;Kim, Hee-Earn
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.121-130
    • /
    • 2017
  • NAND flash memory has advantages of non-volatility, little power consumption and fast access time. However, it suffers from inability that does not provide to update-in-place and the erase cycle is limited. Moreover, the unit of read/write operation is a page and the unit of erase operation is a block. Therefore, erase operation is slower than other operations. The AGC, the proposed garbage collection policy focuses on not only garbage collection time reduction for real-time guarantee but also wear-leveling for a flash memory lifetime. In order to achieve above goals, we define three garbage collection operating modes: Fast Mode, Smart Mode, and Wear-leveling Mode. The proposed policy decides the garbage collection mode depending on system CPU usage rate. Fast Mode selects the dirtiest block as victim block to minimize the erase operation time. However, Smart Mode selects the victim block by reflecting the invalid page number and block erase count to minimizing the erase operation time and deviation of block erase count. Wear-leveling Mode operates similar to Smart Mode and it makes groups and relocates the pages which has the similar update time. We implemented the proposed policy and measured the performance compare with the existing policies. Simulation results show that the proposed policy performs better than Cost-benefit policy with the 55% reduction in the operation time. Also, it performs better than Greedy policy with the 87% reduction in the deviation of erase count. Most of all, the proposed policy works adaptively according to the CPU usage rate, and guarantees the real-time performance of the system.

A Block Allocation Policy to Enhance Wear-leveling in a Flash File System (플래시 파일시스템에서 wear-leveling 개선을 위한 블록 할당 정책)

  • Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.574-577
    • /
    • 2007
  • While disk can be overwritten on updating data, because flash memory can not be overwritten on updating data, new data are updated in new area. If data are frequently updated, garbage collection, which is achieved by erasing blocks, should be performed to reclaim new area. Hence, because the number of erase operations is limited due to characteristics of flash memory, every block should be evenly written and erased. However, if data with access locality are processed by cost benefit algorithm with separation of hot block and cold block, though the performance of processing is high, wear-leveling is not even. In this paper, we propose CB-MB (Cost Benefit between Multi Bank) algorithm in which hot data are allocated in one bank and cold data in another bank, and in which role of hot bank and cold bank is exchanged every period. CB-MB showed that its performance was similar to that of others for uniform workload, however, the method provides much better performance than that of others for workload of access locality.

  • PDF