• 제목/요약/키워드: 가변 길이 개체명

검색결과 2건 처리시간 0.017초

HMM에 기반한 한국어 개체명 인식 (HMM-based Korean Named Entity Recognition)

  • 황이규;윤보현
    • 정보처리학회논문지B
    • /
    • 제10B권2호
    • /
    • pp.229-236
    • /
    • 2003
  • 개체명 인식은 질의응답 시스템이나 정보 추출 시스템에서 필수 불가결한 과정이다. 이 논문에서는 HMM 기반의 복합 명사 구성 원리를 이용한 한국어 개체명 인식 방법에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있다. 또한, 하나의 개체명을 구성하는 단어들 사이와 개체명과 개체명 주위의 단어 사이에도 문맥적 관계를 가지고 있다. 본 논문에서는 단어들을 개체명 독립 단어, 개체명 구성 단어, 개체명 인접 단어로 분류하고, 개체명 관련 단어 유형과 품사를 기반으로 HMM을 학습하였다. 본 논문에서 제안하는 개체명 인식 시스템은 가변길이의 개체명을 인식하기 위해 트라이그램 모델을 사용하였다. 트라이그램 모델을 이용한 HMM은 데이터 부족 문제를 가지고 있으며, 이를 해결하기 위해 다단계 백-오프를 이용하였다. 경제 분야 신문기사를 이용한 실험 결과 F-measure 97.6%의 결과를 얻었다.

개체명 구성 원리를 이용한 교사학습 기반의 한국어 개체명 인식 (Korean Named Entity Recognition Based on Supervised Learning Using Named Entily Construction Principles)

  • 황이규;이현숙;정의석;윤보현;박상규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2002년도 제14회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.111-117
    • /
    • 2002
  • 개체명 인식은 질의응답(QA), 정보 주줄(IE), 텍스트 마이닝 시스템의 성능 향상에 중요한 역할을 담당한다. 이 논문에서는 교사학습 기반의 한국어 개체명 인식에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있으며, 개체명을 구성하는 단어 사이에는 의존 관계가 존재하고, 개체명과 개체명 주위의 단어 사이에도 문맥적 의존관계를 가지고 있다. 본 논문에서는 가변길이의 개체명과 주변 문맥의 학습을 위해 트라이그램을 이용한 HMM을 사용하였으며, 자료 부족 문제를 해소하기 위해 어휘 기반이 아닌 부개체 유형 기반의 학습을 수행하였다. 학습된 개체명 인식 시스템을 이용하여 경제 분야의 신문 기사에 대한 실험 결과, 84.4%의 정확률과 90.9%의 재현률을 보였다.

  • PDF