• Title/Summary/Keyword: 가변 길이 개체명

Search Result 2, Processing Time 0.019 seconds

HMM-based Korean Named Entity Recognition (HMM에 기반한 한국어 개체명 인식)

  • Hwang, Yi-Gyu;Yun, Bo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.229-236
    • /
    • 2003
  • Named entity recognition is the process indispensable to question answering and information extraction systems. This paper presents an HMM based named entity (m) recognition method using the construction principles of compound words. In Korean, many named entities can be decomposed into more than one word. Moreover, there are contextual relationships among nouns in an NE, and among an NE and its surrounding words. In this paper, we classify words into a word as an NE in itself, a word in an NE, and/or a word adjacent to an n, and train an HMM based on NE-related word types and parts of speech. Proposed named entity recognition (NER) system uses trigram model of HMM for considering variable length of NEs. However, the trigram model of HMM has a serious data sparseness problem. In order to solve the problem, we use multi-level back-offs. Experimental results show that our NER system can achieve an F-measure of 87.6% in the economic articles.

Korean Named Entity Recognition Based on Supervised Learning Using Named Entily Construction Principles (개체명 구성 원리를 이용한 교사학습 기반의 한국어 개체명 인식)

  • Hwang, Yi-Gyu;Lee, Hyun-Sook;Chung, Eui-Sok;Yun, Bo-Hyun;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.111-117
    • /
    • 2002
  • 개체명 인식은 질의응답(QA), 정보 주줄(IE), 텍스트 마이닝 시스템의 성능 향상에 중요한 역할을 담당한다. 이 논문에서는 교사학습 기반의 한국어 개체명 인식에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있으며, 개체명을 구성하는 단어 사이에는 의존 관계가 존재하고, 개체명과 개체명 주위의 단어 사이에도 문맥적 의존관계를 가지고 있다. 본 논문에서는 가변길이의 개체명과 주변 문맥의 학습을 위해 트라이그램을 이용한 HMM을 사용하였으며, 자료 부족 문제를 해소하기 위해 어휘 기반이 아닌 부개체 유형 기반의 학습을 수행하였다. 학습된 개체명 인식 시스템을 이용하여 경제 분야의 신문 기사에 대한 실험 결과, 84.4%의 정확률과 90.9%의 재현률을 보였다.

  • PDF