• Title/Summary/Keyword: 가변 강성 액추에이터

Search Result 6, Processing Time 0.02 seconds

Small-Sized Variable Stiffness Actuator Module Based on Adjustable Moment Arm (가변 모멘트 암 기반의 소형 가변 강성 액추에이터 모듈)

  • Yu, Hong-Seon;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1195-1200
    • /
    • 2013
  • In recent years, variable stiffness actuation has attracted much attention because interaction between a robot and the environment is increasingly required for various robot tasks. Several variable stiffness actuators (VSAs) have been developed; however, they find limited applications owing to their size and weight. For realizing their widespread use, we developed a compact and lightweight mini-VSA. The mini-VSA consists of a control module based on an adjustable moment arm mechanism and a drive module with two motors. By controlling the relative motion of cams in the control module, the position and stiffness can be simultaneously controlled. Experimental results are presented to show its ability to change stiffness.

Experimental Study on Different Principles of Variable Stiffness Actuators (가변강성 액추에이터의 원리에 대한 비교 실험 연구)

  • Baek, Kyu Yeol;Kim, HyunGyu;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1049-1054
    • /
    • 2015
  • Nowadays, there are many researches involving structural actuators, which have adjustable stiffness; they are also called variable stiffness actuators (VSA). The VSAs can adjust the characteristics of actuators for various functions and human-machine safety. This paper describes the design and analysis of two types of VSAs. To adjust stiffness, the actuators are controlled by a principle of lever ratio mechanism, by changing a pivot position or a spring position in the structure with springs. To make the principle workable, the designs are simplified by using a ball screw system with a motor. Each structure shows different static properties with variable rates of stiffness. We have also shown the experimental verification of the dynamic performance of the two types of VSAs. This research can be applied to various industrial fields, where humans work in conjunction with robots.

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

Tuning of a Laterally Driven Microresonator using Electrostatic Comb Step Array (계단식 정전빗살구조물을 이용한 수평구동형 미소공진기의 주파수 조정)

  • Lee, Ki-Bang;Seo, Young-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1259-1265
    • /
    • 2003
  • We present a new post-fabrication frequency tuning method for laterally driven electrostatic microresonators using a DC-biased electrostatic comb array of linearly varied finger-length. The electrostatic tuning force and the equivalent stiffness, adjusted by the DC-biased tuning-comb array, have been formulated as functions of geometry and DC tuning voltage. A set of frequency-turnable microresonators has been designed and fabricated by 4-mask surface-micromachining process. The resonant frequency of the microfabricated microresonator has been measured for a varying tuning voltage at the reduced pressure of 1 torr. The maximum 3.3% reduction of the resonant frequency is achieved at the tuning voltage increase of 20V.

Variable Stiffness Series Elastic Actuator Design for Active Suspension (능동형 현가장치를 위한 가변 강성 직렬 탄성 액추에이터 설계)

  • Bang, Jinuk;Choi, Minsik;Lee, Donghyung;Park, Jungho;Park, Eunjae;Lee, Geunil;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • In this study, we developed an FSEA(Force-sensing Series Elastic Actuator) composed of a spring and an actuator has been developed to compensate for external disturbance forced. The FSEA has a simple structure in which the spring and the actuator are connected in series, and the external force can be easily measured through the displacement of the spring. And the characteristic of the spring absorbs the shock to the small disturbance and increases the sense of stability. It is designed and constructed to control the stiffness of such springs more flexibly according to the situation. The conventional FSEA uses a fixed stiffness spring and the actuator is not compensated properly when it receives large or small external force. Through this experiment, it is confirmed that FSEA compensates the external force through the proposed algorithm that the variable stiffness compensates well for large and small external forces.