• Title/Summary/Keyword: 가버 특징

Search Result 45, Processing Time 0.018 seconds

Smart Card User Identification Using Low-sized Face Feature Information (경량화된 얼굴 특징 정보를 이용한 스마트 카드 사용자 인증)

  • Park, Jian;Cho, Seongwon;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2014
  • PIN(Personal Identification Number)-based identification method has been used to identify the user of smart cards. However, this type of identification method has several problems. Firstly, PIN can be forgotten by owners of the card. Secondly, PIN can be used by others illegally. Furthermore, the possibility of hacking PIN can be high because this PIN type matching process is performed on terminal. Thus, in this paper we suggest a new identification method which is performed on smart card using face feature information. The proposed identification method uses low-sized face feature vectors and simple matching algorithm in order to get around the limits in computing capability and memory size of smart card.

A Study on Face Recognition Method based on Binary Pattern Image under Varying Lighting Condition (조명 변화 환경에서 이진패턴 영상을 이용한 얼굴인식 방법에 관한 연구)

  • Kim, Dong-Ju;Sohn, Myoung-Kyu;Lee, Sang-Heon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2012
  • In this paper, we propose a illumination-robust face recognition system using MCS-LBP and 2D-PCA algorithm. A binary pattern transform which has been used in the field of the face recognition and facial expression, has a characteristic of robust to illumination. Thus, this paper propose MCS-LBP which is more robust to illumination than previous LBP, and face recognition system fusing 2D-PCA algorithm. The performance evaluation of proposed system was performed by using various binary pattern images and well-known face recognition features such as PCA, LDA, 2D-PCA and ULBP histogram of gabor images. In the process of performance evaluation, we used a YaleB face database, an extended YaleB face database, and a CMU-PIE face database that are constructed under varying lighting condition, and the proposed system which consists of MCS-LBP image and 2D-PCA feature show the best recognition accuracy.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Face Disguise Detection System Based on Template Matching and Nose Detection (탬플릿 매칭과 코검출 기반 얼굴 위장 탐지 시스템)

  • Yang, Jae-Jun;Cho, Seong-Won;Lee, Kee-Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 2012
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous methods for face disguise detection are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new disguise detection method using the template matching and Adaboost algorithm. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, and uses template matching technique in oreder to increase the detection accuracy in the second stage. The template matching plays a role in determining whether or not the person of the captured image has sunglasses on. Adaboost algorithm is used to determine whether or not the person of the captured image wears a mask. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of disguise faces.

Detecting the Prostate Boundary with Gabor Texture Features Average Shape Model of TRUS Prostate Image (TRUS 전립선 영상에서 가버 텍스처 특징 추출과 평균형상모델을 적용한 전립선 경계 검출)

  • Kim, Hee Min;Hong, Seok Won;Seo, Yeong Geon;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.717-725
    • /
    • 2015
  • Prostate images have been used in the diagnosis of prostate using TRUS images being relatively cheap. Ultrasound images are recorded with 3 dimension and one diagnostic exam is made with a number of the images. A doctor can see 2 dimensional images on the monitor sequentially and 3 dimensional ones to diagnose a disease. To display the images, 2-d images are used with raw 2-d ones, but 3-d images need to be segmented by the prostates and their backgrounds to be seen from different angles and with cut images of inner side. Especially on detecting the boundary, the ones in the middle of all images are easy to find the boundary but the base and apex of the images are hard to do it since there are lots of uncertain boundary. So, in this paper we propose the method that applies an average shape model and detects the boundary, and shows its superiority compared to the existing methods with experiments.