• Title/Summary/Keyword: 가공성세라믹스

Search Result 27, Processing Time 0.021 seconds

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool (텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

An Experimental Study on the Optimum Grinding of Alumina Ceramic Parts (알루미나 세라믹스 부품의 최적화 연삭 가공공정에 관한 기초적 연구 -기계적 특성 치에 의한 최적 가공 기법의 판명-)

  • 강재훈;김원일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.103-116
    • /
    • 1993
  • Recently, engineering ceramics called as the 3 material have been concerned significantly with some excellent mechanical properties and many functions as new materials for high precision mechanical components and engineering parts for at large. Then, for designing engineering parts using engineering ceramics, bending strength value data with high reliability is more essential than any other mechanical properties. But, because of brittleness and structural characteristic, it is very hard to grind with conventional tools, and the generation of cracks and various defects of engineering ceramics parts during grinding machining process are serious problems. Thus, in present study, surface grinding experiments with various machining conditions using resin bond diamond wheels are carried out to obtain the most excellent guality of testpiece surface and optimum step of grinding process for the high efficient stock removal rate to save running time. As the results from grinding experiments and 3-points bending strength test of ground Al2O3 ceramics parts on Korean Standard, manufactured in our country and Japan, basic technology and know-how to develop the optimum grinding machining conditions and also high bending strength values with high reliability are obtained.

  • PDF

The hydration resistance improvement of MgO ceramics by $TiO_2$ addition ($TiO_2$ 첨가에 의한 MgO 세라믹스의 표현 수화 저항성 향상)

  • Ryu, Su-Chak;Kim, Jin-Kon;Hyun Cho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.269-273
    • /
    • 2001
  • The effect of $TiO_2$addition on the hydration reaction of MgO ceramics were studied after being heated at $1450^{\circ}C$. The pure MgO ceramics showed significant weight change after exposure to water due to the hydration reaction through the formation of $Mg(OH)_2$while $TiO_2$-added MgO ceramics did not. The $Mg_2TiO_4$phase were observed in the $TiO_2$-added MgO ceramics sintered at 145$0^{\circ}C$. Bulk density increased as the amount of $TiO_2$increased and the apparent porosity and water absorption decreased by $TiO_2$addition. The hydration resistance of MgO ceramics was found to be improved by $TiO_2$addition.

  • PDF

Machinability Evaluation of ${Si_3}{N_4}$-hBN Machinable Ceramics Using Experimental Design Method (실험계획법에 의한 ${Si_3}{N_4}$-hBN 머시너블 세라믹스의 절삭성 평가)

  • 장성민;임대일;조명우;조원승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.291-295
    • /
    • 2002
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining process can be characterized by cracking and brittle fracture. Generally, ceramics are machined using traditional method such as grinding and polishing. However, such processes are generally costly and have low material removal rate. In this paper, to develop machinable ceramics those have good machinability without losing their material properties, machinability evaluations are performed by applying the experimental design method. In this paper, to evaluate the machinability of the developed ceramics, various workpieces are machined on the CNC machining center, and surface roughness are measured under predefined process parameters obtained using Taguchi method. And the experimental results are investigated to derive optimum cutting parameters for the given materials.

  • PDF

A Study on the Micro Hole Drilling Characteristics of $Si_3N_4$-BN Based Machinable Ceramics ($Si_3N_4$-BN계 가공성 세라믹스의 마이크로 홀 가공특성에 관한 연구)

  • 김동우;조명우;조원승;이응숙;이재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.48-56
    • /
    • 2004
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining mechanism is characterized by cracking and brittle fracture. In this paper, to give good machinability to the ceramics, h-BN powders are added to $Si_3N_4$, by volume of 20, 25 and 30%. And the machinability of the produced ceramics is tested using micro drilling system. Through required experimental works, it is shown that the micro drilling machinability is varied along with the volumetric percentage of h-BN powders. Also, it is verified that the obtained results can be used to develop new machinable ceramics of good material properties and machinability.

Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics ($Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가)

  • 장성민;조명우;조원승;이재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

Micro-Pattern Machining Characteristics Evaluation of $Si_3N_4$-hBN based Machinable Ceramics Using Powder Blasting Process (파우더 블라스팅에 의한 $Si_3N_4$-hBN계 머시너블 세라믹스의 미세패턴 가공성 평가)

  • 박동삼;조명우;김동우;조원승
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Sandblasting has recently been developed into a powder blasting technique for brittle materials. In this study, the machinability of $Si_3N_4$-hBN based machinable ceramics are evaluated for micro - pattern making processes using powder blasting. Material properties of the developed machinable ceramics according to the variation of h-BN contents give a good machinability to the ceramics. The effect of scanning times, the size of patterns and variation of BN contents on the erosion depth of samples without mask and samples with different mask patterns in powder blasting of $Si_3N_4$-hBN ceramics are investigated. The Parameters are the impact angle of $90^{\circ}$, the scanning times of nozzle up to 40, and the stand-off distances of 100mm The widths of masked pattern are 0.1mm 0.5mm and 1mm. The powder used is Alumina particles, WA#600. and the blasting pressure of powder is 0.2MPa. Through required experiments, the results are investigated and analyzed. As the results, the machinability of the developed ceramics increases as the BN contents in the ceramics.

Electrical discharge Machining of SiC-ZrB$_2$Electroconductive Ceramic Composities (SiC-ZrB$_2$계 도전성 복합 세라믹스의 방전가공)

  • 신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.320-325
    • /
    • 1996
  • The influences of ZrB$_2$additives to the SiC and pulse width on electrical discharge machining of SiC-ZrB$_2$electroconductive ceramic composites were investigated. IIigher-flexural strength materials show a trend toward smaller crater volumes, leaving a soother surface; the average surface roughness of the SiC-ZrB$_2$15 Vol.% Composite with the flexural strength of 375㎫ was 3.2${\mu}{\textrm}{m}$,whereas the SiC-ZrB$_2$30 Vol.% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$composites, the SiC-ZrB$_2$two phaes are distinct; the white phase is the ZrB$_2$. In the micrograph of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present.

  • PDF

Effect of h-BN Content on Microstructure and Mechanical Properties of Si3N4 (질화규소의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 김승현;이영환;조원승;김준규;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.867-873
    • /
    • 2003
  • $Si_{3}N_{4}$-BN based machinable ceramics were fabricated by hot-pressing at $1800^{\circ}C$ for 2 h under a pressure of 25 MPa. The microstructure, mechanical properties, and machinability were investigated. With increasing h-BN content from 5 vol% to 30 vol%, three point flexural strength decreased from 1000 MPa of monolithic S $i_3$ $N_4$ to 720~400 MPa. The fracture toughness, $K_{IC}$ , was decreased from 7.6 MPaㆍ$m^{1/2}$ of monolithic S $i_3$ $N_4$ to 6.5~4.1 MPaㆍ$m^{1/2}$. The grain size and aspect ratio of $\beta$-S $i_3$ $N_4$ slightly decreased with increasing h-BN content. S $i_3$ $N_4$ monolith could not be machined due to brittle fracture, but S $i_3$ $N_4$-BN based machinable ceramics could be machined without fracture, showing excellent machinability. With increasing h-BN content, the thurst force during cutting and micro-drilling process was decreased.