• Title/Summary/Keyword: 風洞

Search Result 765, Processing Time 0.024 seconds

Vibratory Loads Behavior of a Rotor in High Advance Ratios (고속 전진비 조건에서의 로터 진동하중 특성 연구)

  • Na, Deok Hwan;You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.237-243
    • /
    • 2018
  • In this study, the hub vibration load characteristic is evaluated for a rotor in high advance ratio conditions while investigating blade loads through the structural load prediction and harmonic analysis. Numerical studies are performed to validate the wind tunnel test data performed in NASA as the rotor advance ratios are varied from 0.40 to 0.71. A good correlation is obtained for rotor performance calculation at the range of advance ratios considered. It is observed that the hub vibration loads remain almost unchanged when the advance ratios are higher than 0.5, even though the amplitudes of blade structural loads become larger with increasing advance ratios. A harmonic analysis on blade moments is confirmed that the dominant structural mode is 3/rev component for flap bending moments and 4/rev for lag bending moments. The reason is due to the tendency of the second flap and lag mode frequencies which approach 3/rev and 4/rev, respectively, as the advance ratios are increased.

The Effect of Slits and Swirl Vanes on the Development of Turbulent Flow Fields in Gun-Type Gas Burner (Gun식 가스버너의 난류유동장 발달에 미치는 슬릿과 스월베인의 영향)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1299-1308
    • /
    • 2003
  • This paper is studied to investigate the effect of slits and swirl vanes on the development of turbulent flow fields in gun-type gas burner with a cone type baffle plate because this gas burner is generally composed of eight slits and swirl vanes. All of turbulent characteristics including mean velocities were measured in the horizontal plane and cross section by using X-type hot-wire probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 l/min in the test section of subsonic wind tunnel. Slits cause the fast jets, and then they have the characteristic that the flow is not adequately spread to radial direction and has long flow length and very small flow velocity distribution in the central part. On the contrary, swirl vanes does not have long enough for adequate flow length to downstream because the rotational flow diffuses remarkably to radial direction. However, the suitable arrangement between slits and swirl vanes causes effective flow width and flow length, and then it promotes fast flow mixing over the entire region including central part to increase turbulence more largely and effectively. Therefore, it is thought as a very desirable design method in gun-type gas burner to locate slits on the outside of swirl vanes.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Calibration and Performance Test of Hot-wire Anemometers by Using a Calibration Wind Tunnel (풍동장치를 이용한 열선풍소계의 보정 및 실태 평가)

  • Ha, Hyun-Chul;Kim, Tae-Hyeung;Kim, Eun-A;Kim, Jong-Chul;Oh, Jung-Ryng;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.110-122
    • /
    • 1999
  • Hot-wire anemometers are most commonly used in measuring hood capture velocities due to their accuracy and convenience. But it was questionable that the anemometers being used in the field are accurate enough for the purpose of measurements. To answer this ques tion, a calibration wind tunnel was newly devised and tested. Subsequently, 53 hot-wire anemometers being currently used in the field were tested to evaluate the accuracy of anemometers. The average error was 16.93% while the average errors in the low (0.5~5m/s) and high (5~20m/s) velocity range were 17.40% and 16.45%, respectively. Most of anemometers underestimated the true velocities. It might be due to the contamination of hot-wire, resulting in the slow heat transfer between the sensor and air flow. Astonishingly, 16 of 53 anemometers were out of order due to the malfunctioning of zero adjustment control, power supply, display panel and sensor. It is desirable to calibrate periodically and clean the sensor after using in the dirty environment.

  • PDF

A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem (균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여)

  • 이기백;김봉환;양장식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1518-1528
    • /
    • 1993
  • The wake-induced vibration and proximity-induced vibration of two interfering circular cylinders in tandem are investigated experimentally, using an elastically supported cylinder and a fixed cylinder in uniform crossflow. Dynamic responses and flow periodicity in wake are measured to investigate the effect of system parameters on aerodynamic instability. The parameters include the free stream wind velocity and the position of two interfering circular cylinders. The oscillating behavior of the amplitude of the elastically supported cylinder is changed by varying the position, the relative gap spacing between two interfering circular cylinders and the reduced velocities. In small gap spacing between the elastically supported cylinder located to upstream and the circular cylinder fixed to downstream, the fluidelastic instability is founded. The vibration amplitude decreases notably as gap spacing between two interfering circular cylinders becomes large. The dynamic behavior at g/D-4.0 is similar to that of the single circular cylinder.

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.

Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing (이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향)

  • 손명환;정형석
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.16-23
    • /
    • 2006
  • The effects of strake planform shapes on the vortex formation, interaction, and breakdown characteristics of double-delta wings were investigated through pressure measurements of upper wing surface and off-surface flow visualization. Three different shapes of strakes were attached to a delta wing respectively to form double-delta wing configurations and tested in a medium-sized subsonic wind tunnel. The results of the pressure measurements indicated that the strake planform having a higher sweep angle generated more concentrated vortex systems at upstream locations, which, however, tended to diffuse and break down much faster at the downstream locations. It was also found from the off-surface visualization results that the cause for the vortex concentration was due to the acceleration of coiling and merging processes between the wing and strake vortices.

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.