• Title/Summary/Keyword: 說苑

Search Result 1,845, Processing Time 0.03 seconds

A Study on the Improvement of Performance for Centralized Air Conditioning System by Using Air-Cooled Air Conditioner - The Case of Mokpo National Maritime University - (공랭식 에어컨을 이용한 중앙 집중 공조시스템의 성능 개선에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryel;Han, Seung-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, distributed the ship's Centralized Air Conditioning System the way an individual to replace the air conditioning system by using Air-cooled air conditioner. Research results, Individually separated air conditioning system complement the heat source control and thermal efficiency problems and improves the efficiency of the device was confirmed. In addition, under the same conditions refrigeration capacity and coefficient of performance of the device, an average of about 3 %, 23 ~ 26 %, higher, Chilled Water Plants Compressor power consumption is about 12 % lower. Also while heating under the same conditions, power consumption is about 33.5 % lower. Therefore Individually Separated Air Conditioning System greatly contributed to the improved performance of the device and living spaces for comfortable temperature and humidity control as well as heating source could be obtained.

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source (고에너지 열원에 따른 스테인리스강의 제살용접특성 비교)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1076-1082
    • /
    • 2012
  • Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics (소형 유기랭킨사이클 시스템 개발 및 작동특성에 관한 연구)

  • Yun, Eunkoo;Kim, Hyun Dong;Yoon, Sang Youl;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.919-926
    • /
    • 2013
  • Experiments were conducted to determine the operating characteristics of a small-scale ORC (organic Rankine cycle) system for various low-temperature heat sources. A small-scale ORC power generation system adopting R-245fa as a working fluid was designed and manufactured. Hot water was used as the heat source, and the temperature was controlled using 110-kW electric resistance heaters that provided temperatures of up to $150^{\circ}C$. An open-drive oil-free scroll expander directly connected to a synchronous generator was installed in the ORC unit. Experiments were conducted by varying the rotational speed of the expander under the same heat source temperature conditions. The factors that influence the performance of the small-scale ORC system were analyzed and discussed.

A Study on the Intervertebral Disc Temperature Distribution During Electrothermal Therapy (추간판의 전기열치료시 온도분포에 관한 연구)

  • 진의덕;탁계래;구자중;김한성;이성재;이정한
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • The prevalence of discogenic pain among patients with chronic low back pain is estimated to be about 40%. Lumbar discectomy is being performed as a treatment according to the studies done so far. Recently IDET- Intradiscal electrothermal therapy which is minimally invasive technique is being introduced. This study will investigate important factors of this procedure such as the temperature of heat source, loading times, and the temperature distribution within the intervertebral disc. This study utilized finite element analysis and experiment. It was able to analyze the temperature range of inner intervertebral disc by two mechanisms which are known to alleviate pain clinically. As a result, verification of temperature distribution to 15.6mm($\geq$45$^{\circ}C$) (Mechanism 1-coagulation inner annulus by heat) and 9mm($\geq$6$0^{\circ}C$) (Mechanism 2- contraction inner nucleus by heat) from the heat source was done.

A study on the comparison of the performance of a heat pump system with air and water heat sources (공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Won-Bin;Park, Youn-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.563-568
    • /
    • 2016
  • In this study, experiments were conducted to evaluate the performance of a heat pump system. A heat pump system with an air as heat source is adapted as reference. The developed system uses a plate heat exchanger an evaporator to absorb heat from a stack of fuel cell driven electric vehicles. Hence, the system functions as a water source heat pump system. The results indicated that the; power consumption increased with the rotational speed of the compressor. A system performance($COP_h$) of 2.03 at an electronic expansion valve(EEV) openings of 25% and a compressor speed of 1200 rpm was observed in the reference system. However, at the same compressor speed, the $COP_h$ of the water source heat pump system corresponded to 9.42 at an EEV openings of 75%. It was found that the water source heat pump system exhibited the highest performance at a water temperature of $50^{\circ}C$.

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF

A numerical analysis of the PCM applied Thermal Protection System (상변화물질을 이용한 열방어체계의 수치해석 연구)

  • Oh, Chang-Mook;Yoo, Young-June;Lee, Hyung-Joo;Min, Sung-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.622-627
    • /
    • 2010
  • This paper is focused on the numerical analysis of two Thermal Protection Systems. Both systems have been provided two different temperature of heating at two walls. Outer wall is heated by high temperature($T_{max}$). Inner wall is heated by heat source($710W/m^2$) while the outer wall is heated. Each system has been provided one side heating(outer wall only) and both side heating respectively. The effects of the heat transfer of both sides of wall, PCM temperature variance through the operation time and Inner space average temperature are investigated. The results have shown that the duration of latent heat mainly depends on the materials, the direction of heat transfer and the heat source and these factors should be concerned in the future.

  • PDF

The Efficiency of External Heat Sources for Infrared Thermography Applied Concrete Structures and the Improvement of the Defect-identification (열화상 기법을 이용한 콘크리트 구조물 결함 검출시 열원의 효율 비교 및 결함검출 능력 향상)

  • Sim, Jun-Gi;Moon, Do-Young;Chung, Lan;Lee, Jong-Seh;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.169-179
    • /
    • 2009
  • The purpose of this paper is to find an efficient heat source to amplify the surface temperature of damaged concrete structures for infrared thermography. we compare two different heat sources of far-infrared lamp and halogen lamp each other for their efficiency. The two heat sources were applied to the concrete specimens. Two different concrete specimens were used: one was the concrete containing internal void and the other was wrapped with partially unbonded fiber reinforced polymer sheet. it was found that the far-infrared lamp was more efficient than the halogen lamp. In addition, we propose a new algorithm to make the damage zone displayed clear in the image obtained from the thermographic operation. The algorithm is a combination of Gauss filtering process and the Prewitt mask operation.

Study on Energy Consumption of Air-source, Ground-source and Dual-source Heat Pump during Intermediate Season (공기, 지열 및 복합 열원 열펌프의 중간기 에너지 소비량에 관한 연구)

  • Cho, Yeong Uk;Woo, Tea Ho;Chung, Kwang-Seop;Kim, Youngil
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • This study is to compare energy consumption of air-source, ground-source and dual-source heat pump systems during intermediate season using dynamic simulation. Ground-source heat pump has higher COP than that of air-source but requires additional power consumption of auxiliary equipment such as circulation pump. During intermediate season when the outdoor air temperature is favorable, total COP of air-source heat pump may be greater than that of ground-source when circulation pump power consumption is included. Dual-source heat pump which selects the more favorable heat source is compared with air-source only and ground-source only heat pumps for total power consumption. Results show that power consumption of dual-source heat pump is lower than that of ground-source only by 0.73%.

Properties of Methane Steam Reforming in Micro Channel Reactor (미세유로 반응기를 이용한 메탄 스팀 개질 반응 특성)

  • Lee, Sung-Wook;Lee, Chun-Boo;Kim, Kwang-Ho;Park, Jin-Woo;Hwang, Kyung-Ran;Park, Jong-Soo;Kim, Sung Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.114.2-114.2
    • /
    • 2010
  • 마이크로 반응기술은 작은 반응기 부피, 높은 열전달, 넓은 반응 면적/부피 및 정확한 반응시간 조절이 가능하기 때문에 화학공정의 고집적화, 반응 선택도의 향상 및 안전도 향상을 꾀할 수 있는 장점이 있다. 이러한 마이크로 반응 기술을 중소형 천연가스 및 국내에서 소규모로 국지적으로 발생하는 메탄의 활용 방안으로서 개발함은 청정 합성유를 제조함으로서 석유 자원의 고갈과 고유가에 대비하여 에너지 자원의 다변화 및 자립을 확보 할 수 있다. 본 연구에서는 마이크로 반응기술을 적용한 미세 유로 반응기(Micro Channel Reactor)를 사용하여 메탄 스팀 개질 반응 특성을 연구하였다. 미세유로 반응기는 내부 홀이 존재하는 plate를 적층함으로 반응기내에 반응가스가 이동할 수 있는 미세유로가 존재하게 하였다. 이러한 미세유로는 반응기의 크기가 작음에도 반응기내에서 반응가스가 충분히 반응할 수 있는 시간과 높은 열전달 효율을 가질 수 있게 한다. 메탄 스팀 개질 반응에 사용된 촉매는 Ni 촉매를 사용하였고, 반응에 필요한 열원으로는 수소 연소에서 발생한 열을 사용하여 반응을 유도하였다. 본 반응기는 외부의 열원을 사용하지 않고, 반응기 내부의 수소 연소에서 발생한 열을 사용함으로 적은 발생 열만으로 메탄 스팀 개질 반응에 필요한 에너지를 얻을 수 있고, 열의 손실이 적다. 또한 메탄 스팀 개질 반응으로 발생한 일부의 수소를 열원으로 이용하여 에너지 사용면에서도 효율적인 반응 공정이다.

  • PDF