• Title/Summary/Keyword: 延安

Search Result 5,301, Processing Time 0.033 seconds

Characteristics of Surface Sediments and Accumulation before and after the Typhoon Kompasu in the Gochang Gwangseungri Sandy Intertidal Flat, Korea (태풍 곤파스 전·후 고창 광승리 사질 조간대의 표층 퇴적물과 집적 특성)

  • Sol Ip Kang;Woo Hun Ryang
    • The Korean Journal of Quaternary Research
    • /
    • v.34 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • Typhoon effects on macrotide open-coast intertidal sediments were investigated in the Gochang Gwangseungri sandy intertidal flat on the Korean western coast. Variations in the surface sediment texture, accumulation, and sedimentary facies were observed before and after the Typhoon Kompasu in 2010. The typhoon Kompasu landed on the southwestern coast of the Korean Peninsula and passed inland between September 1st and 2nd, 2010, respectively. Surface sediments and their accumulation before and after the typhoon were sampled and measured at intervals of 30 m along a survey line on the Gwangseungri intertidal flat. The intertidal areas were divided into high, middle, and lower tidal zones based on the mean high-wate level, mean sea level, and mean low-water level, respectively. The surface sediments of each tidal zone show rare variations in grain size and sorting of sediment texture before and after the typhoon Kompasu, whereas negative skewness values increased in the middle and lower tidal zones after the typhoon rather than before the typhoon. Surface accumulation represents deposition in the upper and middle tidal zone and erosion in the lower tidal zones after the typhoon. The accumulation decreased from the high to the lower tidal zones.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Molecular Identification and First Morphological Description of Larvae and Juveniles of Neosalanx anderssoni (Salangidae) Collected from the Southwestern Sea of Korea (한국 서해 남부해역에서 채집된 도화뱅어, Neosalanx anderssoni (뱅어과) 자치어의 분자 동정 및 첫 형태기재)

  • Seo-Yeon Koo;Se-Hun Myoung;Jin-Koo Kim
    • Korean Journal of Ichthyology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2024
  • During ichthyoplankton survey in the southwestern sea of Korea, we collected six individuals of noodlefish larvae and juveniles between April and May 2023. They were identified as Neosalanx anderssoni by mitochondrial DNA cytochrome c oxidase subunit I or 16S ribosomal RNA sequences, and their external morphological traits were described for the first time. All six individuals have a slender and elongated body. When preflexion and flexion larval stages (10.24 mm notochord length, NL and 15.47 mm total length, TL, respectively), oval-shaped black melanophores were distributed in a row along the ventral side of the gut. However, when postflexion larval and juvenile stages (23.58~25.90 mm TL, and 29.20~31.26 mm TL, respectively), melanophores on the ventral side of the gut were disappeared, and dark spot-shaped melanophores appeared along the dorsal side of the gut in a single row. Also, from the postflexion larval stage (23.58 mm TL), two large black spots began to appear symmetrically on the caudal fin. Our results suggest that N. anderssoni may use coastal area as spawning and/or nursery ground unlike previous study (Kim and Park, 2002).

Osteological Development of Larvae and Juveniles of Sea Raven, Hemitripterus villosus in Coastal Waters off Yeosu (여수 연안산 삼세기(Hemitripterus villosus) 자치어의 골격발달)

  • Na-Young Jeon;Ae-Jeon Park;Sung-Hoon Lee;Tae-Sik Yu;Kyeong-Ho Han
    • Korean Journal of Ichthyology
    • /
    • v.36 no.1
    • /
    • pp.20-29
    • /
    • 2024
  • Hemitripterus villosus, a promising aquaculture fish species, is facing declining stocks. This study aims to provide normative standards for skeletal development to address persistent skeletal deformities in farmed fish. Specimens utilized in the study underwent artificial insemination with captured fish, and the resulting larvae and fry were preserved in a formalin solution. The skeletal ossification process commenced immediately after hatching, affecting the parasphenoid, premaxillary, maxillary, and dentary structures at an average total length of 13.65±0.71 mm (n=5). By sixty-five days post-hatching, ossification extended to the ethmoid and supraorbital, completing the head's development at an average total length of 21.24±0.50 mm (n=5). Clavicle ossification occurred at seven days post-hatching, corresponding to an average total length of 14.61±0.52 mm (n=5). At forty-four days post-hatching, the ossification of 4 actinosts took place, completing the shoulder girdle, with an average total length of 18.15±0.61 mm (n=5). Vertebral ossification initiated at ten days post-hatching, with an average total length of 14.80±0.65 mm (n=5). By fifty-four days post-hatching, 39 vertebral columns were ossified, reaching an average total length of 18.67±0.54 mm (n=5). Vertebral development was complete at sixty days post-hatching, with an average total length of 20.25±0.45 mm (n=5). This study sheds light on the skeletal development of H. villosus, providing valuable standards and fundamental data for understanding skeletal deformities in this species.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

Analysis of Water Temperature Variations in Coastal Waters of the Korean Peninsula during Typhoon Movement (태풍 이동시 한반도 해역별 수온 변동 분석)

  • Juyeon Kim;Seokhyun Youn;Myunghee Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we analyzed the water temperature variability in the sea area of the Korean Peninsula in August, before and after the typhoon inflow through Typhoon Soulik, the 19th in 2018 that turned right around the Korean Peninsula and passed through the East Sea, and Typhoon Bavi, the eighth in 2020 that advanced north and passed through the Yellow Sea. The data used in this study included the water temperature data recorded in the real-time information system for aquaculture environment provided by the National Institute of Fisheries Science, wind data near the water as recorded by the automatic weather system, and water temperature data provided by the NOAA/AVHRR satellite. According to the analysis, when typhoons with different movement paths passed through the Korean Peninsula, the water temperature in the East Sea repeatedly upwelled (northern winds) and downwelled (southern winds) depending on the wind speed and direction. In particular, when Typhoon Soulik passed through the East sea, the water temperature dropped sharply by around 10 ℃. When Typhoon Bavi passed through the center of the Yellow Sea, the water temperature rose in certain observed areas of the Yellow Sea and even in certain areas of the South Sea. Warmer water flowed into cold water regions owing to the movement of Typhoon Bavi, causing water temperature to rise. The water temperature appeared to have recovered to normal. By understanding the water temperature variability in the sea area of the Korean Peninsula caused by typhoons, this research is expected to minimize the negative effects of abnormal climate on aquaculture organisms and contribute to the formulation of damage response strategies for fisheries disasters in sea areas.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

A Study on the Required Horsepower of Tugboats at Jeju Port for Car Ferries - Focusing on Car Ferry H - (카페리여객선 제주항 입출항 시 예선 사용 기준에 관한 연구 - 카페리여객선 H호를 중심으로 -)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.209-216
    • /
    • 2024
  • Four accidents occurred between 2020 and 2022 after car ferries built according to a coastal passenger ship modernization plan collided with other ships or came into contact with the dock when entering Jeju Port. Accidents primarily occurred owing to careless ship handling and drift by wind during ship handled by herself using bow and stern thrusters without tugboats. Accordingly, in this study, we analyzed the collision accident focusing on car ferry H and the critical wind speed at which the ship cannot be controlled using its own power, tugboat operation plan in increasing wind speed were proposed based on the power required for the ship to berth parallel to the pier without a tugboat considering the external force and moment generated while the ship is berthing. A analysis of the critical wind speed of car ferry H by relative wind direction when using tugboats or not according to the loading status and the berthing speed, showed that one tugboat should be used at the stern when the lateral wind speed is over 10 m/s and two tugboats should be used when the lateral wind speed is over 14m/s berthing at Jeju port.