• Title/Summary/Keyword: 對話

Search Result 3,158, Processing Time 0.045 seconds

Performance Estimation of Stream Synchronization Mechanism using Insertion Interactive Object and Variable Suffer (상호대화형 객체 삽입과 가변 버퍼 정책을 이용한 스트림 동기화 기법의 성능 평가)

  • 이병문;이양민;이재기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.58-60
    • /
    • 2003
  • 현재 시간성에 민감한 서비스가 인터넷상에서 중요한 위치물 차지하고 있다 시간성이 민감한 서비스는 사용자와 상호대화를 가능케 하는 미디어 전송 방법 및 연속적 재생을 보장하기 위한 버퍼 정책이 요구된다 관련 연구에서는 설러 방법을 통해 동기화를 달성하고 있으나 상호대화라는 측면에서는 만족할 만한 해결책을 제시하지 못하고 있다. 본 논문에서는 상호대화형 객체(Interactive Object)를 각 미디어 파일에 삽입하고 객체들이 서로의 정보를 이용할 수 있는 함수를 설계하여 실시간에 원하는 미디어 프레임의 재생위치를 찾아냄으로써 동기화와 상호대화성이라는 문제를 해결하였다. 또한 네트워크에 대한 의존성 때문에 발생하는 불연속적인 재생은 크기를 변화시킬 수 있는 가변 버퍼를 이용함으로써 해결하였다. 그리고 두 가지 방법을 적용한 기법의 우수성을 시뮬레이션 실험을 통하여 확인하였다.

  • PDF

Stream Synchronization Mechanism based on the Petri Net using Insertion Interactive Object and Variable Buffer (가변 버퍼와 상호대화형 객체 삽입을 이용한 패트리넷 기반의 스트림 동기화 기법)

  • 이양민;이재기
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.431-436
    • /
    • 2002
  • 네트워크를 통한 미디어 서비스에 있어 다양한 미디어 서비스의 개발과 사용자들의 요구에 대응하기 위해 사용자와의 상호대화를 할 수 있는 미디어 전달 방법과 연속적인 재생을 보장하기 위한 버퍼정책이 요구된다. 지금까지의 관련된 연구에서는 여러 가지 다양한 방법을 통하여 동기화를 달성하고 있으나 상호대화라는 측면에서는 만족할 만한 해결책을 제시하지 않고 있다. 본 논문에서는 상호대화형 객체(Interactive Object)를 각 미디어 파일에 삽입하고 객체들이 서로의 정보를 이용할 수 있는 함수를 설계하여 동기화와 상호대화성이라는 문제를 해결하며 네트워크에 대한 의존성 때문에 발생하는 불연속적인 재생을 가변 버퍼를 이용함으로써 해결하였다.

  • PDF

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

Personality Consistent Dialogue Generation in No-Persona-Aware System (페르소나 대화모델에서 일관된 발화 생성을 위한 연구)

  • Moon, Hyeonseok;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.572-577
    • /
    • 2020
  • 일관된 발화를 생성함에 있어 인격데이터(persona)의 도입을 이용한 연구가 활발히 진행되고 있지만, 한국어 데이터셋의 부재와 데이터셋 생성의 어려움이 문제점으로 지적된다. 본 연구에서는 인격데이터를 포함하지 않고 일관된 발화를 생성할 수 있는 방법으로 다중 대화 시스템에서 사전 학습된 자연어 추론(NLI) 모델을 도입하는 방법을 제안한다. 자연어 추론 모델을 이용한 관계 분석을 통해 과거 대화 내용 중 발화 생성에 이용할 대화를 선택하고, 자가 참조 모델(self-attention)과 다중 어텐션(multi-head attention) 모델을 활용하여 과거 대화 내용을 반영한 발화를 생성한다. 일관성 있는 발화 생성을 위해 기존 NLI데이터셋으로 수행할 수 있는 새로운 학습모델 nMLM을 제안하고, 이 방법이 일관성 있는 발화를 만드는데 기여할 수 있는 방법에 대해 연구한다.

  • PDF

Methods of Expanding Knowledge and Embeddings for Response Generation (응답 생성을 위한 지식 및 임베딩 확장 방법)

  • Kim, Bo-Eun;Jang, Young-Jin;Huang, Jin-Xia;Kwon, Oh-Woog;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.371-375
    • /
    • 2021
  • 문서 기반 대화 시스템은 주어진 배경 지식 문서와 이전 대화를 바탕으로 대화에 이어지는 적절한 응답을 생성하는 시스템이다. 문서 기반 대화 시스템은 지식 추출 작업과 응답 생성 작업으로 나뉘며, 두 하위 작업은 서로 긴밀한 관계를 가지고 있다. 즉, 주어진 배경 지식 문서와 관련된 올바른 응답을 생성하기 위해서는 정확한 지식 추출이 필수적이며, 응답 생성에 필요한 지식을 정확히 추출하지 못하는 경우 생성 응답에 배경 지식이 반영되기 힘들다. 따라서, 본 논문에서는 추출된 지식을 확장하는 방법을 통해 생성에 필요한 지식의 재현율을 높이고 이를 활용할 수 있는 임베딩 확장 방법을 제안함으로써 SacreBLEU 기준 3.51의 성능 향상을 보였다.

  • PDF

A study on data preprocessing method for conversational query-based fashion recommendation system (대화질의 기반 패션 추천시스템을 위한 데이터 전처리 방법에 관한 연구)

  • Choi, Chul-woong;Yeom, Sung-woong;Kim, Kyung-baek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.815-818
    • /
    • 2021
  • 현재 대부분의 패션 추천시스템은 프로필 또는 설문조사를 통해 수집 된 사용자의 정적 정보를 활용하고 있다. 사용자의 정적 정보는 매우 한정적이며 이를 활용하여 다양한 환경에 적합한 패션 코디셋을 추천하기란 매우 어렵다. AI코디네이터와 사용자간의 지속적인 대화가 담긴 대화질의 데이터셋을 사용하면 사용자의 상황과 환경을 고려하여 개인에게 최적화 된 패션 코디셋을 추천할 수 있다. 본 논문에서는 한국전자통신연구원(ETRI)에서 제공하는 AI 패션 코디네이터와 사용자의 대화 정보가 담긴 FASCODE 데이터셋을 사용하여 사용자의 발화에 따라 의상을 추천하는 인공지능 모델을 위한 대화질의 데이터 전처리 방법을 제안한다.

Study on Personification of Korean open domain Dialog system: Focusing on honorific expression under changes of social variations (한국어 오픈도메인 대화 시스템의 의인화 연구: 사회적 변인에 따른 상대높임법 중심)

  • Choi, Nam-Kyu;Min, Byeong-Cheol;Cho, Woo-Ri;Min, Kyung-eun;Jeong, Han-kyeol;Uprety, Sudan Prasad
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.393-395
    • /
    • 2022
  • 실제 대화에서는 다양한 화자와 청자간의 사회적 위치와 관계 등의 사회적 변인에 따라 다양한 상대높임법이 존재한다. 제안하는 상대높임법 중심의 대화시스템 아키텍처를 설명하기에 앞서 배경지식 및 관련연구로 규칙/코퍼스 기반 대화시스템을 소개하고, 상대높임법을 포함하는 공손법처리에 대한 기존 연구들의 제약사항을 논의한다. 본 연구에서는 한국어 상대높임법을 정의 및 사회적 변인 모델링하고 이를 구현하기 위한 대화시스템 아키텍처 방안을 제안한다.

Emotion Analysis-Based AI Chatbot System Using GPT-3 and KoBERT (GPT-3와 KoBERT를 활용한 감정 분석 기반 AI 챗봇 시스템)

  • Junhyeon Kim;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.367-368
    • /
    • 2023
  • 최근 챗봇 시스템은 급격한 발전과 함께 사용자와 자연스러운 대화를 할 수 있는 인공지능 기술의 필요성이 대두되고 있다. 기존의 챗봇 시스템은 대화 상황을 충분히 이해하지 못하거나, 학습된 데이터를 벗어나는 문장에 대한 일관성 있는 응답을 제공하지 못하는 한계가 있다. 본 논문에서는 GPT-3와 KoBERT를 활용하여 사용자의 감정 상태를 파악하고 해당 감정을 고려한 일관성 있는 대화를 제공하는 감정 분석 기반 챗봇 시스템을 제안한다. 이를 바탕으로 긍정적인 대화를 이어 나가는데 초점을 두어 자연스러운 대화가 가능할 것으로 기대된다.

  • PDF

Lightweight Language Models based on SVD for Document-Grounded Response Generation (SVD에 기반한 모델 경량화를 통한 문서 그라운딩된 응답 생성)

  • Geom Lee;Dea-ryong Seo;Dong-Hyeon Jeon;In-ho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.638-643
    • /
    • 2023
  • 문서 기반 대화 시스템은 크게 질문으로부터 문서를 검색하는 과정과 응답 텍스트를 생성하는 과정으로 나뉜다. 이러한 대화 시스템의 응답 생성 과정에 디코더 기반 LLM을 사용하기 위해서 사전 학습된 LLM을 미세 조정한다면 많은 메모리, 연산 자원이 소모된다. 본 연구에서는 SVD에 기반한 LLM의 경량화를 시도한다. 사전 학습된 polyglot-ko 모델의 행렬을 SVD로 분해한 뒤, full-fine-tuning 해보고, LoRA를 붙여서 미세 조정 해본 뒤, 원본 모델을 미세 조정한 것과 점수를 비교하고, 정성평가를 수행하여 경량화된 모델의 응답 생성 성능을 평가한다. 문서 기반 대화를 위한 한국어 대화 데이터셋인 KoDoc2Dial에 대하여 평가한다.

  • PDF

Language Model Evaluation Based on Korean-English Empathetic Dialogue Datasets and Personality (한국어-영어 공감대화 데이터셋과 성격을 기반으로 한 언어모델 평가)

  • Young-Jun Lee;JongHwan Hyeon;DoKyong Lee;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.312-318
    • /
    • 2023
  • 본 연구는 다양한 대규모 언어 모델들의 한국어/영어 공감 대화 생성에서 성능을 실험적으로 비교 분석하는 것과 개인의 성향과 공감 사이에서의 상관 관계를 실험적으로 분석하는 것을 목표로 한다. 이를 위해, 한국어 공감 대화 데이터셋인 KorEmpatheticDialogues 를 구축하였고, personality-aware prompting 방법을 제안한다. 실험을 통해, 총 18개의 언어 모델들 간의 공감 대화 생성 성능을 비교 분석하였고, 개인의 성향에 맞춤형 제공하는 공감이 더 상호작용을 이끌어낼 수 있다는 점을 보여준다. 코드와 데이터셋은 게재가 허용되면 공개할 예정이다.

  • PDF