• Title/Summary/Keyword: 對話

Search Result 3,166, Processing Time 0.037 seconds

A Study on Building Korean Dialogue Corpus for Punctuation and Quotation Mark Filling (문장 부호 자동 완성을 위한 한국어 말뭉치 구축 연구)

  • Han, Seunggyu;Yang, Kisu;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.475-477
    • /
    • 2019
  • 문장 부호란, 글에서 문장의 구조를 잘 드러내거나 글쓴이의 의도를 쉽게 전달하기 위하여 사용되는 부호들로, 따옴표나 쉼표, 마침표 등이 있다. 대화 시스템과 같이 컴퓨터가 생성해 낸 문장을 인간이 이해해야 하는 경우나 음성 인식(Speech-To-Text) 결과물의 품질을 향상시키기 위해서는, 문장 부호의 올바른 삽입이 필요하다. 본 논문에서는 이를 수행하는 딥 러닝 기반 모델을 훈련할 때 필요로 하는 한국어 말뭉치를 구축한 내용을 소개한다. 이 말뭉치는 대한민국정부에서 장관급 이상이 발언한 각종 연설문에서 적절한 기준을 통해 선별된 고품질의 문장으로 구성되어 있다. 문장의 총 개수는 126,795개이고 1,633,817개의 단어들(조사는 합쳐서 한 단어로 계산한다)로 구성되어 있다. 마침표와 쉼표는 각각 121,256개, 67,097개씩이다.

  • PDF

Semantic and Syntax Paraphrase Text Generation (유사구조 및 유사의미 문장 생성 방법)

  • Seo, Hyein;Jung, Sangkeun;Jung, Jeesu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.162-166
    • /
    • 2020
  • 자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.

  • PDF

Query Normalization Using P-tuning of Large Pre-trained Language Model (Large Pre-trained Language Model의 P-tuning을 이용한 질의 정규화)

  • Suh, Soo-Bin;In, Soo-Kyo;Park, Jin-Seong;Nam, Kyeong-Min;Kim, Hyeon-Wook;Moon, Ki-Yoon;Hwang, Won-Yo;Kim, Kyung-Duk;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.396-401
    • /
    • 2021
  • 초거대 언어모델를 활용한 퓨샷(few shot) 학습법은 여러 자연어 처리 문제에서 좋은 성능을 보였다. 하지만 데이터를 활용한 추가 학습으로 문제를 추론하는 것이 아니라, 이산적인 공간에서 퓨샷 구성을 통해 문제를 정의하는 방식은 성능 향상에 한계가 존재한다. 이를 해결하기 위해 초거대 언어모델의 모수 전체가 아닌 일부를 추가 학습하거나 다른 신경망을 덧붙여 연속적인 공간에서 추론하는 P-tuning과 같은 데이터 기반 추가 학습 방법들이 등장하였다. 본 논문에서는 문맥에 따른 질의 정규화 문제를 대화형 음성 검색 서비스에 맞게 직접 정의하였고, 초거대 언어모델을 P-tuning으로 추가 학습한 경우 퓨샷 학습법 대비 정확도가 상승함을 보였다.

  • PDF

KE-T5-Based Text Emotion Classification in Korean Conversations (KE-T5 기반 한국어 대화 문장 감정 분류)

  • Lim, Yeongbeom;Kim, San;Jang, Jin Yea;Shin, Saim;Jung, Minyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

Korean Generative Chatbot using Topic Embedding (주제 임베딩을 활용한 한국어 생성 기반 챗봇)

  • Oh, Shinhyeok;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.524-528
    • /
    • 2020
  • 챗봇은 발화에 대해 컴퓨터가 자동으로 응답하는 시스템이다. 현재 챗봇은 전체 주제에 대한 잡담(chit-chat)보다는 특정 주제에 관한 대화를 목적으로 많이 개발되고 있다. 하지만 개개인이 필요로 하는 챗봇 용도에 적합한 학습 데이터는 부족하다. 이러한 상황에서 챗봇 학습을 위해 필요한 주제의 말뭉치를 대량으로 구축하는 것은 시간과 비용이 많이 소모되어 현실적으로 어렵다. 따라서 학습에 필요한 소량의 말뭉치만 사용하더라도 주제에 적합한 응답을 할 수 있는 챗봇이 필요하다. 이에 본 논문은 챗봇의 목적과 관련 없는 대량의 말뭉치와 소량의 주제 기반 말뭉치를 이용하여 높은 성능을 끌어낼 수 있는 주제 임베딩 방법을 제안한다.

  • PDF

Big data/AI-based smart maritime logistics chatbot service (빅데이터/AI 기반 스마트 해상물류 챗봇 서비스)

  • Park, Sang-Jun;Lee, Yoon-Pyo;Jeong, Won-Seok;Choi, Yong-Tae;Hong, Jin-Won
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1349-1352
    • /
    • 2021
  • 본 학술지는 기존의 공공 행정서비스에서의 복잡한 업무처리를 간단하게 처리할 수 있는 FAQ 형태의 챗봇서비스를 제안한다. 본 논문이 제안하는 주요 특징은 다음과 같다. 버튼, 대화, STT(Speech To Text)를 통한 사용자 기반 UI/UX를 제공한다. 딥러닝을 통한 Synonym, Typo를 검출하여 가장 높은 정확도의 Entity로 변환해준다. 이를 통해, 사용자는 해상물류 서비스를 이용하는데 있어 부담감을 해소하고 편리함을 얻을 수 있다.

A Study of Chatbot Implementation and SNS Linkage using Google Open Source Chatbot Framework (Google 오픈소스 프레임워크를 이용한 챗봇 구현 및 SNS 연동 연구)

  • Sung, Yeol-Woo;Park, Daeseung;Kim, Cheong-Ghil
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.402-404
    • /
    • 2021
  • 최근 인공지능 기술이 발전하면서, 일상에서 인공지능 기반 챗봇을 어렵지 않게 접할 수 있다. 챗봇 기술이 발전하면서, 챗봇을 구현하기 위한 다양한 챗봇 프레임워크가 등장하였다. Google 의 Dialogflow 는 최소한의 코딩으로 챗봇을 설계하고, 생성하기 위한 오픈소스 챗봇 프레임워크로 Facebook Messenger, Telegram, Slack 등 여러 메신저 플랫폼과 연동이 된다. 본 논문은 Dialogflow 를 이용한 프로토타입 챗봇 구현을 통하여 Dialogflow 의 특징인 Dialog(대화)의 Flow(흐름)를 만들기만 하면 이를 통해 챗봇을 만들어 지는 용이성 검증을 시행하였다.

AI voice phishing prevention solution using Open STT API and machine learning (Open STT API와 머신러닝을 이용한 AI 보이스피싱 예방 솔루션)

  • Mo, Shi-eun;Yang, Hye-in;Cho, Eun-bi;Yoon, Jong-Ho
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1013-1015
    • /
    • 2022
  • 본 논문은 보이스피싱에 취약한 VoIP와 일반 유선전화 상의 보안을 위해 유선전화의 대화내용을 Google STT API 및 텍스트 자연어 처리를 통해 실시간으로 보이스피싱 위험도를 알 수 있는 모델을 제안했다. 보이스피싱 데이터를 Data Augmentation와 BERT 모델을 활용해 보이스피싱을 예방하는 솔루션을 구상했다.

A Study on Dialect Expression in Korean-Based Speech Recognition (한국어 기반 음성 인식에서 사투리 표현에 관한 연구)

  • Lee, Sin-hyup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.333-335
    • /
    • 2022
  • The development of speech recognition processing technology has been applied and used in various video and streaming services along with STT and TTS technologies. However, there are high barriers to clear written expression due to the use of dialects and overlapping of stop words, exclamations, and similar words for voice recognition of actual conversation content. In this study, for ambiguous dialects in speech recognition, we propose a speech recognition technology that applies dialect key word dictionary processing method by category and dialect prosody as speech recognition network model properties.

  • PDF

CycleGAN for Enhancement of Degraded Speech by Face Mask (마스크 착용에 의해 왜곡된 음성의 품질 향상을 위한 CycleGAN 기술)

  • Lim, Yujin;Yu, Jeongchan;Seo, Eunmi;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.63-64
    • /
    • 2022
  • 마스크 착용은 대화나 통화 등의 의사소통에 불편함을 초래하고 음성의 품질과 명료도를 떨어트린다. 이를 해결하기 위해 음성 향상 기술이 필요하며, 머신러닝 기반의 다양한 음성 향상 방법이 개발되었다. 지도 학습을 위해 마스크 착용 유무에 따라 일대일로 대응된 음성 데이터를 확보하는 것은 매우 어렵고, 따라서 일대일로 대응된 데이터가 필수적이지 않은 비지도 학습이 요구된다. 본 논문에서는 비지도 학습방식을 사용하면서 콘텍스트를 유지하며 특징을 변경할 수 있는 CycleGAN을 이용하여 마스크 착용에 의한 음성 왜곡을 복원 시키는 기술을 제안한다. 스펙트로그램 기반으로 마스크 착용에 의해 왜곡된 음성을 마스크 미착용 음성으로 변환하여 음성의 품질을 향상시켰다. 청취평가를 진행한 결과 품질이 향상된 음원의 선호도가 더 높음을 확인하였으며 스펙트로그램을 통해 3 kHz 이상의 고대역 에너지가 증가하는 것을 확인하였다. 이를 통해 CycleGAN을 이용한 비지도 학습으로 마스크 착용에 의해 왜곡된 음성의 품질을 향상시킬 수 있음을 확인하였다.

  • PDF