Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.335-336
/
2022
본 논문에서는 시간대와 대화 주제를 활용하여 카테고리별로 적절한 SNS 광고 시간대 예측 방법을 제시한다. 위의 분석으로 광고주들에게 적절한 광고시간을 제안할 수 있다. 연관규칙분석 알고리즘인 apriori를 사용하였다. 주제는 상거래(쇼핑), 미용과 건강, 시사/교육, 식음료, 여가생활로 추려서 분석하였다. 연관분석 결과, 미용과 건강이 18시, 17시, 16시에 가장 활발히 대화를 나누었다. 상거래(쇼핑)이 14시, 16시, 17시 순으로 가장 활발히 대화를 나누었으며, 시사/교육이 15시, 17시, 16시 순으로 많은 대화를 나누었으며, 식음료가 18시, 17시, 19시 순으로 대화를 많이 나눈 것을 확인했다. 마지막으로, 여가생활은 22시, 23시, 21시 순으로 각각의 대화 주제별로 가장 많이 대화를 나눈 시간대가 달라지는 것을 확인할 수 있었다. 이를 통해 소비자 입장에서는 알맞은 광고를 적절한 시간대에 추천받을 수 있다.
대화 데이터 기반 광고 추천은 광고 마케팅에서 고객 맞춤형 광고 제공, 마케팅 효과 극대화 등을 위한 중요한 기술로 주목받고 있다. 본 논문에서는 모바일 인스턴스 메신저인 카카오톡 대화창에서 발생한 텍스트 데이터를 기반으로 대화 내용을 분석하여 대화 주제별 적절한 광고 키워드를 제안한다. 이를 위해 주제별 대화 내용을 미용, 식음료, 상거래로 세분하고 KoNLPy 의 Okt 를 이용하여 텍스트 전처리를 수행하고 키워드별로 빈도수를 뽑아 워드 클라우드를 제시한다. 또한, 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA)을 기반으로 대화 주제를 세분화한 뒤 라벨링을 통해 주제별 대화 키워드를 분석한다. 실험 결과, 대화 주제를 온라인 쇼핑, 헤어, 뷰티 관리, 음식으로 나눌 수 있었으며, 토픽별 상위 키워드를 Word2Vec 을 통해 특정 단어와 유사한 키워드를 도출하여 적절한 광고 키워드를 제시할 수 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.253-257
/
2023
최근 다양한 대화 시스템이 스마트폰 어시스턴트, 자동 차 내비게이션, 음성 제어 스피커, 인간 중심 로봇 등의 실세계 인간-기계 인터페이스에 적용되고 있다. 하지만 대부분의 대화 시스템은 텍스트 기반으로 작동해 다중 모달리티 입력을 처리할 수 없다. 이 문제를 해결하기 위해서는 비디오와 같은 다중 모달리티 장면 인식을 통합한 대화 시스템이 필요하다. 기존의 비디오 기반 대화 시스템은 주로 시각, 이미지, 오디오 등의 다양한 자질을 합성하거나 사전 학습을 통해 이미지와 텍스트를 잘 정렬하는 데에만 집중하여 중요한 행동 단서와 소리 단서를 놓치고 있다는 한계가 존재한다. 본 논문은 이미지-텍스트 정렬의 사전학습 임베딩과 행동 단서, 소리 단서를 활용해 비디오 기반 대화 시스템을 개선한다. 제안한 모델은 텍스트와 이미지, 그리고 오디오 임베딩을 인코딩하고, 이를 바탕으로 관련 프레임과 행동 단서를 추출하여 발화를 생성하는 과정을 거친다. AVSD 데이터셋에서의 실험 결과, 제안한 모델이 기존의 모델보다 높은 성능을 보였으며, 대표적인 이미지-텍스트 자질들을 비디오 기반 대화시스템에서 비교 분석하였다.
A chatbot is an interactive assistant that utilizes many communication modes: voice, images, video, or text. It is an artificial intelligence-based application that responds to users' needs or solves problems during user-friendly conversation. However, the current version of the chatbot is focused on understanding and performing tasks requested by the user; its ability to generate personalized conversation suitable for relationship-building is limited. Recognizing the need to build a relationship and making suitable conversation is more important for social chatbots who require social skills similar to those of problem-solving chatbots like the intelligent personal assistant. The purpose of this study is to propose a text analysis method that evaluates relationships between chatbots and users based on content input by the user and adapted to the communication situation, enabling the chatbot to conduct suitable conversations. To evaluate the performance of this method, we examined learning and verified the results using actual SNS conversation records. The results of the analysis will aid in implementation of the social chatbot, as this method yields excellent results even when the private profile information of the user is excluded for privacy reasons.
Recently, as a new ICT trend, emerging chatbots are actively introduced in the field of finance. Chatbot conducts services through the interaction of communication with users. The purpose of this study is to investigate the effect of interaction dialogue type on the efficiency, usability, sensibility and perceived security of financial service chatbot. Based on theoretical considerations, I have divided into closed conversation, open conversation, and mixed conversation type based on the conversation style based on the implementation method of chatbot. Three types of Financial Chatbot prototypes were made and the experiments were conducted after account inquiry, account transfer, Q & A financial task execution. As a result of experimental research analysis, chatbot's interaction dialogue type was found to affect efficiency and usability. Users have shown that the interaction of closed conversations and mixed conversations is an intuitive interface that allows financial services to be easily manipulated without error. This study will be used as a resource to improve the user experience that requires deep understanding of financial chatbot users who should consider both the emotional element of artificial intelligence that provides services through natural conversation and the functional elements that perform financial business can be.
The Journal of the Convergence on Culture Technology
/
v.7
no.1
/
pp.620-631
/
2021
The study aim to test the effect of voice agent's preceding utterance type on the user experience in the smart home contexts by conversation types. Based on two types of conversation (task-oriented vs. relationship-oriented conversations) and two types of utterance (preceding vs. response utterances), four different scenarios were designed for experimental study. A total of 62 participants were divided into two groups by utterance type, and exposed to two scenarios of the conversation types. Likeability, psychological reactance, and perceived intelligence were measured for the user experience of conversational agent. The result showed main effects of likeability in task-oriented conversations, and of psychological reactance in preceding utterances. The interaction effect demonstrated that preceding conversation improved the likeabilitty and perceived intelligence in the task-oriented conversations.
Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.27-38
/
2023
In this paper, we propose a conversational AI agent based on continual learning that can continuously learn and grow with new data over time. A continual learning-based conversational AI agent consists of three main components: Task manager, User attribute extraction, and Auto-growing knowledge graph. When a task manager finds new data during a conversation with a user, it creates a new task with previously learned knowledge. The user attribute extraction model extracts the user's characteristics from the new task, and the auto-growing knowledge graph continuously learns the new external knowledge. Unlike the existing conversational AI agents that learned based on a limited dataset, our proposed method enables conversations based on continuous user attribute learning and knowledge learning. A conversational AI agent with continual learning technology can respond personally as conversations with users accumulate. And it can respond to new knowledge continuously. This paper validate the possibility of our proposed method through experiments on performance changes in dialogue generation models over time.
This study examines the effects of a new app-based intervention program for conversational skills of children with high-functioning autism spectrum disorder (ASD). Participants in this study comprised 26 children diagnosed with autism, Asperger's syndrome, or pervasive developmental disorder-not otherwise specified (PDD-NOS). Participants were randomly assigned into a treatment group or a control group according to their ages, IQ, SCQ, and ASSQ scores. The treatment group met with teachers once a week for a single non-face-to-face class for nine weeks, along with conversation training at home using an app. The control group did not participate in any specific programs for conversational skills. Conversation data of all participants were collected before and after the intervention to compare the two groups based on changes in the conversational turn-taking and topic manipulation skills. When analyzed with respect to a Group X Period analysis of variance (ANOVA), the data indicated maintenance on the rate of appropriate listener's verbal responses in the treatment group, whereas the rate of inappropriate listener's verbal response significantly declined in the control group. In addition, the rate of conversation initiation and maintenance and the rate of appropriate initiation improved in the treatment group, whereas the rate of inappropriate initiation declined in this group. Overall, the study demonstrates promising effects of the novel App-based digital intervention on verbal conversational skills in children with high function ASD.
Speech recognition errors cause fatal results in a spoken dialogue system. When a system can not determine the speech-act of u utterance due to speech recognition errors, a dialogue system has a difficulty in continuing conversation. In this paper, we propose strategies for sub-dialogue generation by inferring the speech-act of an utterance with patterns of recognition errors on the field of form-filling dialogue. We used the proposed method on a plan-based dialogue model, corrected 27% of incomplete tasks, and acquired overall 89% of task completion rate.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.112-116
/
1995
본 논문에서는 한-일 대화체 기계번역 시스템을 위한 대화체 모델을 제시한다. 이 대화체 모델에서는 구문분석과 의미분석을 거치지 않고 형태소 분석만을 이용하여 대화체 모델을 구현하였다. 대화체모델은 담화문으로부터 목표를 추출하는 GOAL DETECTOR, 추출된 목표에 맞는 플랜을 제시하는 PROPOSER, 제시된 플랜의 적합성 여부를 결정하는 PROJECTOR, 플랜의 실행 후 결과를 시스템의 환경에 반영하는 EXECUTOR 및 영역에 대한 지식을 표현하는 영역지식(Domain Knowledge)으로 구성이 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.