• Title/Summary/Keyword: ↑CSI

Search Result 469, Processing Time 0.026 seconds

A Performance Comparison of MIMO Detection Algorithms in Frequency Selective Fading Channel with Imperfect Channel State Information (주파수 선택성 채널에서 불완전한 채널상태정보를 갖는 MIMO 검파 알고리즘의 성능비교)

  • Ren, Jin;Yoon, Seok-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.26-33
    • /
    • 2008
  • Signal detection is a key technique in wireless communication system. Recently, several detection algorithms have been developed for multiple-input multiple-output (MIMO) wireless communication systems. However, most research in this area had assumed a flat-fading channel environment and all these techniques are based on the assumption that the channel state information (CSI) at the receiver side is perfect. But in practical situation, the available CSI may be imperfect because of channel estimation errors and/or outdated training. In this paper, we will compare the performance of several detection algorithms in MIMO frequency selective fading channel environment with imperfect CSI.

CoMP Transmission for Safeguarding Dense Heterogeneous Networks with Imperfect CSI

  • XU, Yunjia;HUANG, Kaizhi;HU, Xin;ZOU, Yi;CHEN, Yajun;JIANG, Wenyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.110-132
    • /
    • 2019
  • To ensure reliable and secure communication in heterogeneous cellular network (HCN) with imperfect channel state information (CSI), we proposed a coordinated multipoint (CoMP) transmission scheme based on dual-threshold optimization, in which only base stations (BSs) with good channel conditions are selected for transmission. First, we present a candidate BSs formation policy to increase access efficiency, which provides a candidate region of serving BSs. Then, we design a CoMP networking strategy to select serving BSs from the set of candidate BSs, which degrades the influence of channel estimation errors and guarantees qualities of communication links. Finally, we analyze the performance of the proposed scheme, and present a dual-threshold optimization model to further support the performance. Numerical results are presented to verify our theoretical analysis, which draw a conclusion that the CoMP transmission scheme can ensure reliable and secure communication in dense HCNs with imperfect CSI.

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.

Identification of Contaminant Injection in Water Distribution Network

  • Marlim, Malvin Samuel;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.114-114
    • /
    • 2020
  • Water contamination in a water distribution network (WDN) is harmful since it directly induces the consumer's health problem and suspends water service in a wide area. Actions need to be taken rapidly to countermeasure a contamination event. A contaminant source ident ification (CSI) is an important initial step to mitigate the harmful event. Here, a CSI approach focused on determining the contaminant intrusion possible location and time (PLoT) is introduced. One of the methods to discover the PLoT is an inverse calculation to connect all the paths leading to the report specification of a sensor. A filtering procedure is then applied to narrow down the PLoT using the results from individual sensors. First, we spatially reduce the suspect intrusion points by locating the highly suspicious nodes that have similar intrusion time. Then, we narrow the possible intrusion time by matching the suspicious intrusion time to the reported information. Finally, a likelihood-score is estimated for each suspect. Another important aspect that needs to be considered in CSI is that there are inherent uncertainties, such as the variations in user demand and inaccuracy of sensor data. The uncertainties can lead to overlooking the real intrusion point and time. To reflect the uncertainties in the CSI process, the Monte-Carlo Simulation (MCS) is conducted to explore the ranges of PLoT. By analyzing all the accumulated scores through the random sets, a spread of contaminant intrusion PLoT can then be identified in the network.

  • PDF

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels (시변 채널에서 Bit-Interleaved Coded OFDM을 위한 적응 변조 기법)

  • Choi, Jin-Soo;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • When adapting the transmitter to the channel state information(CSI), improved transmission is possible compared to the open loop system where no CSI is provided at the transmitter. However, since the perfect channel information is rarely available at the transmitter, the system design based on the partial CSI becomes an important factor. Especially, in mobile environments, the consideration for the outdated CSI should be applied for mitigating the performance degradation. In this paper, we propose a robust adaptive modulation and coding scheme for bit-interleaved coded orthogonal frequency division multiplexing over time-varying channels. With reasonable feedback overhead, the proposed scheme shows the enhanced performance by compensating for the outdated CSI due to Doppler spread. Simulation results confirm that the performance gain is achieved by applying an accurate BER estimation method.

Novel Viterbi Decoding Architecture for DVB-T with Improved Performance in Rayleigh Channels (레일레이 채널에서 성능 향상을 위한 DVB-T용 비터비 디코더의 아키텍쳐)

  • Oh, Jung-Youn;Park, Kyu-Hyun;Lee, Seung-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.718-726
    • /
    • 2002
  • This paper presents a novel Viterbi decoding architecture for European Digital Video Broadcasting (DVB) receiver. The channel sate information (CSI) of each sub carrier is used to weight the bit-metric of each symbol. The weighted bit-metric is delivered to Viterbi decoder after going through the symbol deinterleaver and bit deinterleaver, such that the CSI can be correctly applied to corresponding bits even after the two interleavings. Simulation shows that the new architecture gives significant performance enhancement of 6~13dB in Rayleigh fading channels depending on the modulation types. This results is also better than previous results by 3.7~10.3dB.

Performance Analysis of Block Turbo Coded OFDM System Using Channel State Information (채널상태정보를 이용하는 블록터보 부호화된 OFDM 시스템의 성능 분석)

  • Kim, Han-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.872-877
    • /
    • 2011
  • In this paper, the new decoding algorithm of Block Turbo Codes using Channel State Information(CSI), which is estimated to compensate for the distorted signal caused by multi-path fading, is proposed in order to improve error correction capacity during decoding procedure in OFDM system. The performance of the new decoding algorithm is compared to that of the conventional decoding algorithm without using channel state information under the Rayleigh fading channel. Experimental results showed that in case of only one iteration coding gains of up to 5.0dB~9.0dB can be obtained by applying the channel state information to the conventional decoding algorithm according to the modulation methods. In addition to that, the new decoding algorithm using channel state information at only one iteration shows a performance improvement of 3.5dB to 5.0dB when compared to the conventional decoding algorithm after four iterations. This leads to reduce the considerable amount of computation.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.