• Title/Summary/Keyword: ε-poly-L-lysine

Search Result 4, Processing Time 0.018 seconds

Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding

  • Liu, Sheng-Rong;Wu, Qing-Ping;Zhang, Ju-Mei;Mo, Shu-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.358-365
    • /
    • 2015
  • ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the epsilon amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

Separation of ε-poly-L-lysine from the fermentation broth of Streptomyces albulus (Streptomyces albulus 배양액으로부터 ε-poly-L-lysine의 분리)

  • Sun, Heung-Suk;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Grown in the secondary broth of production media, the strain Streptomyces albulus has increased more the production of its metabolite ${\varepsilon}$-poly-L-lysine, one of poly(amino acid)s used as disinfecting food additives, than the strain in the primary culture of growth nutrients. Having the strain removed, the large concentrate obtained by ultrafiltrating the secondary culture broth. The concentrated production broth exchanged into followed by detecting in UV flowcell at 220nm the peptide bond of the components eluting the adsorbed proteins and polylysine with NaCl salt of gradient concentration, and has separated into five components. Among them the component in the fourth peak fraction has proved to be the pure ${\varepsilon}$-poly-L-lysine after the portion being hydrolyzed the fraction with HCl into amino acid followed by being the composing amino acid analysis.

  • PDF

Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-ʟ-lysine) Production Through Expression of Vitreoscilla Hemoglobin

  • Xu, Zhaoxian;Cao, Changhong;Sun, Zhuzhen;Li, Sha;Xu, Zheng;Feng, Xiaohai;Xu, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1819-1826
    • /
    • 2015
  • Poly(ε-ʟ-lysine) (ε-PL) is a novel bioactive polymer secreted by filamentous bacteria. Owing to lack of a genetic system for most ε-PL-producing strains, very little research on enhancing ε-PL biosynthesis by genetic manipulation has been reported. In this study, an effective genetic system was established via intergeneric conjugal transfer for Streptomyces albulus PD-1, a famous ε-PL-producing strain. Using the established genetic system, the Vitreoscilla hemoglobin (VHb) gene was integrated into the chromosome of S. albulus PD-1 to alleviate oxygen limitation and to enhance the biosynthesis of ε-PL in submerged fermentation. Ultimately, the production of ε-PL increased from 22.7 g/l to 34.2 g/l after fed-batch culture in a 5 L bioreactor. Determination of the oxygen uptake rate, transcriptional level of ε-PL synthetase gene, and ATP level unveiled that the expression of VHb in S. albulus PD-1 enhanced ε-PL biosynthesis by improving respiration and ATP supply. To the best of our knowledge, this is the first report on enhancing ε-PL production by chromosomal integration of the VHb gene in an ε-PL-producing strain, and it will open a new avenue for ε-PL production.

Effects of Crude ε-poly-L-lysine in Streptomyces albulus Broth on Suppression of Microbial Growth in Korean Kimchi (폴리리신을 함유한 Streptomyces albulus 배양액의 김치미생물 성장억제 효과)

  • Kim, Kwang-sub;Lee, Garpee;Sun, Heung-suk;Ahn, Chi-min;Park, Chanyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.91-95
    • /
    • 1999
  • The Streptomyces albulus broth, when the polylysine in the broth, that has powerful growth inhibiting effect far many microbes, is its maximum, had filtered off the cells, to use the broth as preservative for keeping favorable taste of Korean Kimchi. Some microorganisms in their specific growth medium, known to deteriorate the useful nutrient of the Kimchi, has grown with different amounts of the inhibiting broth, to determine the minimum growth inhibition concentration. The ${\varepsilon}$-poly-L-lysine had been identified from the IR spectroscopic analysis of the purified poly lysine of the broth from ion exchange chromatographic separation. The content of the polylysine had been determined by methyl orange decoloration effect. Though the minimum inhibition concentration, evaluated by the naked eye based on the conventional method measuring the turbid feature after 18 hours of culture, has different values each other, the observed effects confirmed that the crude broth could be used as a natural preservative for the Kimchi in extending the fair taste.

  • PDF