• Title/Summary/Keyword: }ATPase$

Search Result 781, Processing Time 0.023 seconds

Studies on the ATPases of Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle (家兎골격근小胞體切片의 ATPase 에 관한 硏究)

  • Ha, Doo-Bong;Eunsook Song;Park, Hee-Soon
    • The Korean Journal of Zoology
    • /
    • v.17 no.2
    • /
    • pp.93-102
    • /
    • 1974
  • Fragmente dsarcoplasmic reticulum of rabbit skeletal muscle was prepared and biochemical properties of its ATPase activity were studied. The ATPase of the fragments could be distinguished as $Mg^++ - ATPase and (Mg^++ - Ca^++)$-ATPase. The activity of $(Mg^++ - Ca^++)$-ATPase was predominant over that of $Mg^++$-ATPase in the temperature range of $0 \\sim 40^\\circ C$ and in the pH 6.4$\\sim$7.6. At higher temperatures the predominance of $(Mg^++ - Ca^++)$-ATpase was far greater. The apparent energies of activation were 14 kcal/mole for $Mg^++$-ATPase, 21kcal/mole for $(Mg^++ - Ca^++)$-ATPase, and 18kcal/mole for total ATPase. Changes in pH and Mg concentration did not alter the energies of activation of these ATPases. The Km values of these ATPases were found to be 0.36 mM for $Mg^++$-ATPase, 2.20 mM for $(Mg^++ - Ca^++)$-ATpase, and 0.86 mM for total ATPase.

  • PDF

A BIOCHEMICAL STUDY OF $Ca^{++}$-ATPASE AND $Mg^{++}$-ATPASE ACTIVITY IN HUMAN DENTAL PULP (치수에서 $Ca^{++}$-ATPase와 $Mg^{++}$-ATPase의 활성도에 관한 실험적 연구)

  • Hwang, In-Sung;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.10 no.1
    • /
    • pp.139-147
    • /
    • 1983
  • This study was undertaken to evaluate the physiological roles & mechanism of $Ca^{++}$-ATPase & $Mg^{++}$-ATPase in human dental pulp. Each specimen of dental pulp was obtained from the freshly extracted, freeze-dried 242 teeth. $Ca^{++}$-ATPase & $Mg^{++}$-ATPase activity were measured by the release of inorganic phosphate & protein with Spectrophotometer. The results were as follows; 1. The $Ca^{++}$-ATPase & $Mg^{++}$-ATPase activity were significantly increased in developing teeth. 2. The $Ca^{++}$-ATPase & $Mg^{++}$-ATPase activity were significantly decreased in nonvital teeth. 3. The $Ca^{++}$-ATPase & $Mg^{++}$-ATPase activity were significant decreased in deciduous teeth. 4. The $Ca^{++}$-ATPase & $Mg^{++}$-ATPase activity didn't have relation with dental caries. 5. The $Ca^{++}$-ATPase & $Mg^{++}$-ATPase were activated by either $Ca^{++}$ alone or $Mg^{++}$ alone.

  • PDF

Inhibitory Effect of Thapsigargin on the Activities of $H^+-ATPases$ in Tomato Roots (토마토 뿌리조직 $H^+-ATPase$ 활성에 미치는 Thapsigargin의 저해효과)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.212-216
    • /
    • 2005
  • Thapsigargin is a specific antagonist of SR/ER-type $Ca^{2+}-ATPase$ in animal tissue, and it was used to characterize the microsomal ATPases prepared from the roots of tomato. When $10\;{\mu}M$ thapsigargin was added, it inhibited the microsomal ATPase activity by 30%. The thapsigargin-induced inhibition was dose-dependent. Since the activity of $Ca^{2+}-ATPase$ is very low in the roots of tomato tissue, it is possible that thapsigargin inhibits the activities of major $H^+-ATPases$ located in plasma and vacuolar membranes. The inhibitory effect of thapsigargin was reduced when the vacuolar $H^+-ATPase$ activity was inhibited by ${NO_3}^-$. However, the effect of thapsigargin was not observed on the $H^+-ATPase$ activity located in the plasma membrane. These results suggest that thapsigargin inhibits the vacuolar $H^+-ATPase$ activity in the roots of tomato.

Seasonal Variation in the $Na^+$,$K^+$-ATPase Activity in Frog (Rana dybowskii) Brain (개구리 뇌에서 $Na^+$,$K^+$- ATPase 특성의 계절적 변화)

  • 김미승;임욱빈
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 1995
  • Seasonal changes in the activity and charaderistics of brain Na+, K+-ATPase and Mg2+-AWase were investigated in frog (Rana dybowskii) The brain Na+, K+-ATPase adivity during hibernation was similar to that in active period in frogs. The Na+, K+-AWase activity increased in December and March, when the frogs enter into and awake from the hibernation. Over 5-35$^{\circ}C$ temperature range, Na+, K+-ATPase showed non4inear Arrhenius kinetics throughout the year. The brain Mg2+-ATPase activity decreased during hibernation, but markedly increased in March. The Arrhenius plots for Mg2+-AWase activity were linear in frogs both in torpid and active state. The ratio of Na+, K+-AWase activity at 15~C to at 35~C did not change during hibernation. The sensitivity of Na+, K+-AWase to ouabain was also unchanged throughout the year. These results indicate that the activity and charaderistics of brain Na+, K+-AWase remain unchanged during hobernadon in frog.

  • PDF

Effects of Ijingtang fractions on activities of NaK ATPase and Ca ATPase in rat brain synaptosome (이진탕 분획엑스가 synaptosomal NaK ATPase와 Ca ATPase의 활성도에 미치는 영향)

  • Jo, Yeong-Uk;Han, Seung-Ho;Kim, Chang-Ju;Min, Byeong-Il;Lee, Tae-Hui;Yun, Sang-Hyeop;O, Su-Myeong
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.198-207
    • /
    • 1997
  • To explore the action mechanism of Ijintang in the brain, the authors investigated the effects of Ijintang fractions on MgNaK ATPase and MgCa ATPase in rat brain synaptosomes prepared from cerebral cortex. The activities of MgNaK ATPase and MgCa ATPase were assayed by the level of inorganic phosphate liberated from the hydrolysis of ATP. Fraction WH-95-7 at the concentration of $10^{-2}%$ decreased the activity of MgNaK ATPase about 34.1% and also reduced the activity of MgCa ATPase about 49.3% But, other fractions (WB-95-7, WC-95-7, MB-95-7, MC-95-7, MH-95-7) did not significantly changed the activities of the MgNaK ATPase and MgCa ATPase The decreased activity of MgNaK ATPase by WH-95-7 will decrease the rate of $Ca^{2+}$ efflux, probably via an Na-Ca exchange mechanism and will increase the rate of $Ca^{2+}$ entry by the depolarization of nerve terminals. The reduced activity of MgCa ATPase by WH-95-7 will result in the decreased efflux of $Ca^{2+}$. As a conclusion, it can be speculated that lithium elevates the intrasynaptosomal $Ca^{2+}$ concentration via inhibition of the activities of MgNaK ATPase and MgCa ATPase. and this increased $[Ca^{2+}]i$ will cause the release of neurotransmitters.

  • PDF

Action of Acetylcholine on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (Acetylcholine이 토끼 적혈구막의 NaK ATPase의 활성도에 대한 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 1976
  • The action of acetylcholine on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of acetylcholine on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is inhibited by acetylcholine. 2. The ratio of inhibition of NaK ATPase by acetylcholine is decreased by raising the potassium concentration, and is increased by raising the sodium concentration. 3. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts. The ratio of inhibition of the enzyme by acetylcholine is increased by raising the calcium concentration. 4. The inhibitory action of acetylcholine on the NaK ATPase activity was not related to the sulfhydryl group of cysteine, the hydroxyl group of threonine, or the carboxyl group of aspartic acid. 5. The inhibitory action of acetylcholine on the ATPase activity is due to amino group of the enzyme of NaK ATPase.

  • PDF

Inhibition of Microsomal $H^+\;-\;ATPase$ Prepared from Tomato Roots by Various Anions (음이온에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성 저해)

  • Shin, Dae-Seop;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.67-72
    • /
    • 2001
  • $H^+-ATPase$ located on plasma and vacuolar membranes play major roles in various cellular physiological processes. In order to investigate the physiological roles of $H^+-ATPase$, microsomes were prepared from tomato roots and the effects of various anions were measured on the activities of $H^+-ATPase$. $H^+-ATPase$ was inhibited by various anions. Citrate and phosphate were chosen to investigate detailed inhibitory mechanisms on $H^+-ATPase$ since they showed different levels of inhibition. Inhibitory effect of citrate was observed at the concentrations above 3 mM. When 20 mM citrate was added, the ATPase activity was decreased by 50-60%. However, the inhibitory effect of citrate was decreased by increasing the concentration of$Mg^{2+}$ The citrate-induced inhibited activity was recovered by the addition of $Mg^{2+}$ Addition of 7 mM $Mg^{2+}$ completely removed the inhibitory effect of citrate and the activity recovered to the level of the control experiment. These results imply that citrate chelates $Mg^{2+}$ and thus inhibits $H^+-ATPase$. Meanwhile, the inhibitory effect of phosphate was observed at the concentration above 3 mM and the activity was decreased by 50% in the presence of 30 mM phosphate. Further addition of $Mg^{2+}$ showed no recovery on the activity. These results imply that the inhibitory effect of phosphate is not dependent upon the concentration of $Mg^{2+}$.

  • PDF

The Effects of Diphenylhydantoin and Ouabain on ATPase Activity in Rat Erythrocyte Membranes (Diphenylhydantoin 및 Ouabain 이 흰쥐 적혈구세포막 ATPase에 미치는 영향)

  • Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1970
  • The effects of ouabain and diphenylhydantoin on ATPase activity in rat erythrocyte membranes were studied and also influence of K on ATPase activity was studied. The ATPase activity of rat erythrocyte membrane has been shown to consist of two components. The first component requires the Mg but occurs in the absence of Na or K (Mg-ATPase) and is not inhibited by ouabain and stimulated by diphenylhydantoin. The second component requires the presence of Mg and also Na or K (Na-K-Mg-ATPase). It is inhibited by ouabain and is stimulated by diphenylhydantoin in low Na concentration and inhibited in high Na concentration. K inhibit Na-K-Mg-ATPase which is inhibited by ouabain. Ouabain and diphenylhydantoin show reversed effect to Na-K-Mg-ATPase activity. It suggest that the therapeutic effect of diphenylhydantoin on digitalis induced cardiac arrhythmia may be resulted from their effect on ion transport mechanism of cell membrance. And the relevance of these findings to the action of ouabain and diphenylhydantoin on membrane transport mechanism is discussed.

  • PDF

Effects of Various Hypnotic and Tranquilizer on the Homogenate ATPase Activity of the Rat Brain Cortex (백서 뇌 피질 Homogenate 내 ATPase 활성도에 미치는 수종 최면제 및 안정제의 영향)

  • Lee, Yang-Hee;Han, Dong-Dae;Chung, Young-Koo;Hwang, Dong-Soo
    • The Korean Journal of Physiology
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 1972
  • The activity of Mg and Na-K activated ATPase of homogenate from rat brain cortex was measured in vitro under the variety of conditions. The effects of various hypnotic and tranquilizer such as phenobarbital, amobarbital, diazepam, promazine and chlorpromazine on the activities of both ATPase was investigated and the results was summarized as follows. 1. Na-K ATPase was slightly inhibited by phenobarbital and amobarbital while Mg ATPase was moderately activated by these drugs. 2. Both Mg and Na-K ATPase activities were markedly inhibited by diazepam. 3. Promazine and chlorpromazine markedly inhibited both Mg and Na-K ATPase activities. These findings indicate that remarkable correlation between hypnotic or tranquilizing potency and ATPase inhibition could be observed.

  • PDF

Action of Aconite on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 aconite의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1976
  • The action of aconite on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of aconite on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by aconite, and the concentration of aconite for maximal activity is about 80 mg%. The pH optimum for the aconite sensitive component is 8.0. 2. The activating effect of aconite on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but activity ratio is decreased. 3. The activating effect of aconite on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of aconite on the ATPase activity is inhibited by calcium ions and the effect of inhibition is increased by small amounts of calcium but decreased by larger amounts. 5. The activating effect of aconite on the ATPase was not related to the sulfhydryl group of cysteine, the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The action of aconite on the ATPase activity is due to carboxyl group of the enzyme of NaK ATPase.

  • PDF