• Title/Summary/Keyword: {110}<001> texture

Search Result 34, Processing Time 0.024 seconds

Goss Texture Development of Asymmetrically Rolled IF Steel Sheet (비대칭 압연한 IF 강 판의 Goss 집합조직 발달)

  • Kim, I.;Nam, S.K.;Kim, G.H.;Lee, D.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • To obtain the Goss texture, {110}<001>, IF steel sheets were asymmetrically rolled by 50-89% reduction in the thickness at room temperature and subsequently annealed at 200, 900, and $1200^{\circ}C$ in a box furnace under air atmosphere. The asymmetrically rolled specimens and annealed specimens show well-developed Goss texture, {110}<001>. After the IF steel sheets were asymmetrically rolled at room temperature and subsequently annealed at $900^{\circ}C$ for 1 h in a box furnace under air atmosphere, the intensity of the Goss texture, {110}<001> was high in the IF steel sheets.

A Study on Change of Texture During Thermal Cycling in Cu-Zn-AI Shape Memory Alloy (Cu-Zn-AI 형상기억 합금의 열사이클에 따른 집합조직의 변화에 관한 연구)

  • Hong, D.W.;Park, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.179-185
    • /
    • 1992
  • The shape memory effect results from the martensite transfomation of each individual grain. Thus it is necessary to study the texture and its variation. In this study the change of texture during thermal cycling and it's effect on shape memory ability are investigated. The major component of the rolling texture in the parent phase is identified (001) [110], and minor components are (112) [110], (111) [112], {hkl}<100> fiber texture is developed at $45^{\circ}$ from rolling direction. In the case of martensite phase, it is estimated that the major component is (011) [100] and the minor components are (105) [501], (010) [101] and (100) [001]. According to thermal cycling. severity of texture, especially (001) [110] component in parent phase and (011) [100] component in martensite phase are increased. The shape memory ability is increased with increase of thermal cycles and also increased as the direction of specimen approach to $45^{\circ}$ from rolling direction. After first thermal cycling the temperature of transformation can be define clearly and Ms and As are raised by thermal cycling.

  • PDF

Deformation and Recrystallization of INCONEL 690 (인코넬 690의 변형 및 재결정)

  • 표은종;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.167-171
    • /
    • 1995
  • The formation of preferred orientations in cold rolled and recrystallized Inconel 690 sheets was studied by the x-ray texture measurements and TEM observations. The increasing{220} pole intensity in the plane normal at the higher reductions was related to the{110}<112> texture component. The rolling texture of the Inconel 690 was the pure metal type. THe dislocation cells were found in the near{110}<112> oriented grains. The onset of deformation twins in the {112}<111>oriented grains. The onset of deformation twins in the {112}<111> oriented grains. The onset of deformation twins in the {112}<111> oriented grains caused the weakening of {112}<111> and the development of {552}<115> in the rolling texture. The annealing texture of the Inconel 690 sheets was dependent on the annealing temperature. The annealing texture of 750$^{\circ}C$ annealed sheets was similar to the cold rolling texture. The major preferred orientations of the 950$^{\circ}C$ annealed specimens were {112}<110> and {001}<110>. The formation of fine and closely spaced annealing twins in the specimen annealed at 1150$^{\circ}C$ led to the randomization of the annealing texture.

  • PDF

Effect of Initial Texture on the Development of Goss Orientation of Asymmetrically Rolled Steel Sheets (비대칭 압연한 강판의 GOSS 방위 발달에 미치는 초기 집합조직의 영향)

  • Lee, C.W.;Jeong, H.T.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The Goss texture component of {110}<001> is well known as one of the best texture components to improve the magnetic properties of electrical steel sheets. The small amount of the Goss texture component is obtained at the surface of the steel sheet by shear deformation due to friction between the steel sheet and the roll during conventional symmetric rolling. This study aims to identify a method to obtain high intensity of the Goss texture component not only at the surface but in the whole layer of the steel sheet by shear deformation of asymmetric rolling. Low carbon steel sheets, which have different initial texture, were asymmetrically rolled by about 50%, 70%, and 80%. The pole figures of the top, center, and bottom layers of the initial and asymmetrically rolled low carbon steel sheets were measured by an X-ray diffractometer. Based on the measured pole figures of these samples, the intensities of the main texture components were analyzed for the initial and asymmetrically rolled low carbon steel sheets. As a result, the initial low carbon steel sheet with the γ-fiber component showed a higher intensity of the Goss texture component in the whole layer than the steel sheet with other texture components after asymmetric rolling.

Texture Development of Cold Rolled and T-6 Treated 7X1X Al-alloy with 0.1% Sc (0.1% Sc이 첨가된 7X1X Al-합금의 압연과 T-6열처리에 따른 집합조직의 발달)

  • Jea, C.W.;Jin, S.J.;Chung, D.S.;Lim, S.T.;Park, N.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • After extrusion, cold rolling and T-6 treatment, texture development of 7x1x Al-alloy with 0.1% Sc is studied. During extrusion the very strong <111>+weak <100> fiber texture is developed, which is Influenced on the formation of rolling texture. The texture after 80% cold rolling can be described by strong{112}<111>(Cu)+{123}<634>(S) component in the cross section of the extruded rod, the strong -fiber+weak{110}<001>(Goss) components in the longitudinal section, and the strong {110}<112>(Bs)+weak{001}<100>(Cube) components in the transverse section. The components of rolling texture are remained after T-6 treatment, but the maximum density of ODF is higher. The calculated mean r-values and the planar anisotropy are relatively high, which are dependent on the texture. After T-6 treatment, recrystallized equiaxed grains with average grain size of $1{\sim}2{\mu}m$ are obtained.

Surface-energy -induced Selective Growth and Magnetic Induction in 3%Si-Fe Strip (극박 3%규소강에서 표면에너지 유기 선택적 결정성장 현상과 자성특성)

  • 조성수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.57-61
    • /
    • 2001
  • The {111}<112> deformation torture, which originated from the {110}<00l> texture near the surface of hot bands, is not prerequisite for the recrystallized {110}<001> Goss texture. During final annealing, surface-energy-induced selective growth of grains urn at the strip surface of 3%Si-Fe alloys containing 6ppm bulk content of sulfur. With decreasing final reduction, the probability that Goss grains survive under the highly segregated sulfur atmosphere and have a chance for later surface-energy-induced selective growth becomes higher, resulting in high magnetic induction.

  • PDF

Texture Evolution in Aluminum Alloy Sheets during Deep Drawing Process (디프드로잉에 의한 알루미늄합금판재의 집합조직 발달에 관한 연구)

  • 최시훈;조재형;정관수;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.140-147
    • /
    • 1998
  • The texture evolution by deep drawing was investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The calculated textures show different behaviors with the amount of the flange deformation and initial crystal orientations. Among the crystal orientations located parallel to RD, the crystal orientations around the D component rotated toward the Cu component, the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<001> and {110}<111> components during deep drawing. In the case of the part parallel to 45$^{\circ}$ with respect to RD, the crystal orientations around the D component rotated about ND and the crystal orientations along the ${\alpha}$ fiber also rotated toward the (110)[23] and (110)[27] components about ND. In the part parallel to TD, the crystal orientations around the D component rotated toward the Rotated Cube and the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<113> component.

Texture of Ultrasonic Weld Interface in Metals (초음파 용접 계면의 집합 조직)

  • 김인수;김성진;이민구;이응종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.73-80
    • /
    • 1996
  • Commerical purity aluminium , copper and STS 304 stainless steel sheets are welded by ultrasonic welding. The microstructures, x-ray diffraction profiles of planes , pole figures of the surface of original metal sheets are compared with those of the weld interface. The microstructures show disturbance and dark areas in the weld interface and grain refinement in the vicinity of the interface. The x-ray diffraction intensity of each plane in weld interface decreased in all metal sheets with exception of 9200) in steel sheet. The microstructure and x-ray diffraction intensity is affected by the mixture of deformation, heating and vibratin duringthe ultrasonic welding. Therefore, after the ultrasonic welding, the positions of the peak intensity in the pole figures are changed, the value of the maximum pole intensity is decreased in Al, is increased in copper and stainless steel. Very strong {100} <001> texture, strong {100} <001>,{123}<634> textures in original Al surface are transformed into weak, {100}<001>, {110}<112> and {112}<111> components in weld surface, weak (110) fiber is slightly changed to (110) fiber in copper, (100)and ${\gamma}$ fiber components are transformed into strong ${\gamma}$ fiber component in stainless steel.

  • PDF

Asymmetric Rolling as Means of Texture and Ridging Control and Grain Refinement (집합조직과 이랑형표면결함의 제어 및 결정립 미세화 수단으로서의 비대칭압연)

  • Lee D.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.11-18
    • /
    • 2004
  • Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and $\{001\}<110>$ orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss $\{110\}<001>\;and\;\{112\}<111>$ orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve mechanical properties. Steel sheets, especially ferritic stainless steel sheets, and aluminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

  • PDF

Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process (ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.