• Title/Summary/Keyword: {\omega}$ Model

Search Result 483, Processing Time 0.029 seconds

$H_\infty$ Control Apprach to a Magnetic Levitation System with Two Poles on $j_\omega$-Axis

  • Qi, Run-De;Tsuji, Teruo;Oguro, Ryuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.339-344
    • /
    • 1993
  • An H$_{\infty}$ control system design for a magnetic levitation system is presented. In the control system design, we consider the influence of both disturbances and uncertainties in the model. The main disturbances stem from the position sensors.The uncertainties are divided into electromagnetic and mechanical ones: the former are due to the gain change in the current amplifier, the influence of leakage flux and modelling error in the magnetic circuit and the latter are due to the changes of the mass and the moments of inertia of the vehicle. Therefore, the designed controller is indispensable to guarantee the robustness of this system for both stability and performance. The controller design is based on the standard H$_{\infty}$ optimal control problem. As the novel features in this paper :(1) there are two poles on j.omega.-axis in the control model;(2) an integrator is included in the controller so that equivalently there are three poles on j.omega.-axis in the model. Finally, several experiments and simulations are carried out to verify the high performance and robustness of the designed control system.m.

  • PDF

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

Frequency Characteristics of Anodic Oxide Films on Tantalum

  • Lee, Dong-Nyung;Yoon, yong-Ku
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 1973
  • The Nishitani's equations for impedance of anodic oxide films have been derived based on a p-i-n model under the assumption of $\omega$$\varepsilon$$\rho$$_{ο}$<<4$\pi$<<$\omega$$\varepsilon$$\rho$$_{\omega}$, where $\omega$ is angular frequency, $\varepsilon$ is dielectric constant, and $\rho$$_{ο}$ and $\rho$$_{\omega}$ are the resistivity of the interface region and the intrisic region of the anodic oxide film, respectively. Since it is not possible to evaluate all parameters in the equations, however, any clear physical picture cannot be obtained from the equations. Therefore, the equations are modified under the assumption of $\omega$$\tau$$_{\omega}$>>1 and In(1+$\omega$$^2$$\tau$$_{ο}$$^2$)<<1, where $\tau$$_{\omega}$=$\varepsilon$$\rho$$_{\omega}$(4$\pi$) and $\tau$$_{ο}$=$\varepsilon$$\rho$$_{ο}$/(4$\pi$). The modified equations are then used to explain the change in the frequency characteristics of anodic oxide films when they are heated. The change in impedance of anodic oxide films when they are heated is attributed mainly to the increase in the diffusion layer and to the decrease in the resistivity of anodic oxide films.s.

  • PDF

Numerical Study of Flow Characteristics over Square Cylinders with an Attached Splitter Plate

  • Nguyen, Van Minh;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.86-95
    • /
    • 2018
  • The fluid flow over structures has been widely investigated by many researchers because its extensive application in offshore structures, skyscrapers, chimneys and cooling towers, brides. In the viewpoint of reducing the drag for offshore structure, it becomes challenging problem in the field of hydrodynamic of offshore structure. The purpose of this study is to investigate a flow over a square cylinder with an attached splitter plate using RANS method. First, RANS turbulent models such as a standard $k-{\omega}$ model, SST $k-{\omega}$ model, RNG $k-{\varepsilon}$ model, realizable $k-{\varepsilon}$ model, standard $k-{\varepsilon}$ model were used for choosing suitable turbulent model which has the best agreement with available experimental result. Drag of single cylinder estimated by using standard $k-{\omega}$ has a good agreement with published experimental result. Therefore, the stand $k-{\omega}$ was selected for simulation for flow over a square cylinder with an attached plate. Second, the numerical results of drag of square cylinder with an attached splitter plate in various length of an attached plate were performed using RANS method in ANSYS Fluent. In this paper, the numerical simulations were conducted at a Reynolds number of 485 and the thickness of the splitter plate is chosen as a constant value about 10% of cylinder width. The numerical results of drag coefficient of square cylinder are compared with experimental result published by other researchers. Finally, the effect of the splitter plate attached to the rear side of the square cylinder has been investigated numerically with a focus on the drag coefficient and flow characteristic. As a result, the drag coefficient decreases with an increase in splitter plate length.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

Three-Dimensional Time Varing Magnetic Field Analysis: Using E-$\Omega$ Method (E-$\Omega$ 법을 이용한 3차익 교류 자장 해석)

  • Kim, Dong-Soo;Han, Song-Yup
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.49-52
    • /
    • 1989
  • Some limits are in two-dimensional analysis by finite element method to electromagnetic machine having finite dimension. Therefore three-dimensional analysis by finite element method, which are modeling original form of models are needed in order to gain accurate solutions. This paper present three-dimensional time varing magnetic field analysis method using electric field E and magnetic scarlar potential $\Omega$, and examine sample model.

  • PDF

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel (사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석)

  • Lee, G.H.;Nine, Md.J.;Choi, S.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF