• Title/Summary/Keyword: ] $SO_{4}$

Search Result 34,517, Processing Time 0.056 seconds

A Study on Selection of SO2 Resistant Tree Species - I. Leaf Disk Experiment - (SO2에 대한 내성수종(耐性樹種)의 선발(選拔)을 위한 기초연구(基礎研究) - I. 엽조직(葉組織) 실험(實驗) -)

  • Kim, Gab Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.223-228
    • /
    • 1988
  • To select $SO_2$-resistant tree species, leaf disks of 6mm in diameter, cut from the leaves of 6 species (Wistaria floribunda, Magnolia obovata, Rosa multiflora, Liriodendron tulipifera, Robinia pseudo-acacia and Acer palmatum) were floated on 25ml of testing medium and placed on laboratory under fluorescent lamp (1,500 Lux) for 20 hours. Chlorophyll content and acidity of the testing medium were measured. Testing medium was prepared by diluting $H_2SO_4$, $H_2SO_3$ and $Na_2SO_4$ with distilled water for various stoichiometric $SO_2$ concentrations, 0, 25, 50, 100 and 250 ppm. Total chlorophyll content was more decreased after treatment than before treatment, and was decreased more severely in $H_2SO_3$ sources, followed by $H_2SO_4$ and $Na_2SO_4$, sources. Decreasing rate of total chlorophyll content was generally large in Acer palmatum. Magnolia obovata and Wistaria floribunda, and was relatively small in Rosa multiflora, Liriodendron tulipifera and Robinia pseudo-acacia. Decreasing rate of chlorophyll content may be useful index for judging susceptifility of the leaf to $SO_2$. The acidity of the testing medium was generally decreased after treatment, and it means that cell leakage was occurred during treatment. The differences in medium acidity between before and after treatment may be poot index for susceptibility of the leaf to $SO_2$ owing to the difference among tree species in development of leaf mesophyll, acidity maintaining mechanism and butter capacity of the leaf tissue.

  • PDF

Activation Property of Blast Furnace Slag by Calcined Alunite (하소(?燒) 명반석(明礬石)에 의(依)한 고로수쇄(高爐水碎)슬래그의 활성화(活性化) 특성(特性))

  • Kim, Hyung-Seok;Jo, Young-Do;Ahn, Ji-Whan;Kimura, Kunio;Han, Choon
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.27-35
    • /
    • 2006
  • In order to use alunite as an activator of blast furnace slag, we studied the hydration characteristics of the calcined alunite and the ground blast furnace slag. The alunite calcined at $650{\cire}C$ consists of KAl($KAl(SO_{4})_{2}$ and $Al_{2}O_{3}$. The calcined alunite reacts with $Ca(OH)_{2}$ and gypsum to form etrringite ($3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O$) as fellows:$2KAl(SO_{4})_{2}+2Al_{2}O_{3}+13Ca(OH)_{2}+5CaSO_{4}{\cdot}2H_{2}O+73H_{2}O{\rightarrow}3(3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O)+2KOH$. The $SO_{4}^{2-}$ ions from calcined alunite reacts with CaO in blast furnace slag to from gypsum, which reacts with CaO and $Al_{2}O_{3}$ to from ettringite in calcined alunite-blast furnace slag system. Therefore blast furnace slag can be activated by calcined alunite.

Hydration Properties of 3CaO.3A12O3.CaSO4.CaSO4ㆍ2H2O - Ca(OH)24 - 3CaO.Al2O3 System (3CaO.3A12O3.CaSO4.CaSO4.2H2O - Ca(OH)24 - 3CaO.Al2O3계의 수화 특성)

  • 배승훈;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.859-866
    • /
    • 2003
  • When calcium sulfoaluminate-based expansive cement was hydrated, ettringite and monosulfate were mainly formed. The crack of hardened cement was prevented by compensating drying shrinkage due to formation of the above hydrates. In order to study the hydration properties of calcium sulfoaluminate-based expanding cement, 3CaOㆍ3Al$_2$O$_3$ㆍCaSO$_4$(C$_4$A$_3$S) was prepared by chemical synthesis, and then the hydration of $C_4$A$_3$S-Ca(OH)$_2$-CaSO$_4$.$2H_2O$-C$_3$A system_was characterized. Good $C_4$A$_3$S phase was prepared at $1300^{\circ}C$ by chemical synthesis, and the main hydration product of $C_4$A$_3$S-Ca(OH)$_2$-CaSO$_4$.2$H_2O$ system was ettringite. In the case of hydration $C_4$A$_3$S-Ca(OH)$_2$-CaSO$_4$ㆍ 2$H_2O$-C$_3$A system, ettringite was formed in the early period and it was transformed into monosulfate while consumed gypsum.

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Leaching of Soil Cations by Simulated Acid Rains of Different Compositions (구성성분이 다른 인공산성비에 의한 토양의 양이온 용탈에 관한 연구)

  • Ryu, Kwan-Shig;Min, Tai-Gi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 1998
  • The influence of the anion composition of simulated acid rain on cation leaching of two soils with different surface charge properties was examined. Four mixtures of mole ratio of $SO_4:NO_3$(1:0, 2:1, 1:1, 0:1) with pH 2.0 simulated acid rain were applied to an Inceptisols(Gyuam series) and Andisols(Pyeongdae series). The Andisols had higher $SO_4{^{2-}}$ adsorption capacity than the Inceptisols because of its higher point of zero charge(PZC, pH 6.5) than Inceptisols(PZC pH 3.1). Cation leaching in Andisols varied directly with the $NO_3$ content of the leaching input due to higher mobility of $NO_3$ compared with $SO_4$ that was absorbed. The pH of the Andisols was higher with the addition of $Na_2SO_4$ than the addition of $NaNO_3$ indicating that this soil behaves as a base and has a high $SO_4$ adsorption capacity. The relative $NO_3{^-}/SO_4{^{2-}}$ content input had no effect on cation leaching of the Inceptisols. Amounts of leaching on the Andisols by simulated acid rain were higher than Inceptisols. This experiment explained that anion composition of acid rain plays a significant role in the cation leaching of soils which are able to adsorb $SO_4$.

  • PDF

Diffusion of Ion in Hardened Cement Paste Containing Slag-Siliceous Powder(II) Diffusion of SO4-- Ion (슬래그-규산질 미분말을 함유하는 시멘트 경화체중에서의 이온의 확산(II) SO4 이온의 확산)

  • 김태현;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.329-334
    • /
    • 1987
  • Diffusion of SO4-- ion in hardened cement paste with slag and siliceous powders such as silica fume and white carbon was investigated. Ca(OH)2 from hardenend cement paste was dissolved by sea-water and then gypsum was formed from the reaction of Ca++ in hardenend cement paste and SO4-- ions in MgSO4 solution. A part of the gypsum by reaction with calcium aluminate hydrates formed ettringite. Amounts of SO4-- ions passed through hardened cement paste was less than that of Cl- ions(Dcl-) in hardened cement paste were 0.1∼0.6${\times}$10-11$\textrm{cm}^2$/sec and 1∼4${\times}$10-8$\textrm{cm}^2$/sec respectively.

  • PDF

Preparation of $CaSO_4$ Nanoparticles by Catanionic Vesicles Formed in Cationic OTAC and Anionic ADS Mixed Aqueous Solution (양이온 OTAC와 음이온ADS 혼합 수용액에서 형성된 층막구형체에 의한 $CaSO_4$ 나노입자의 제조)

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.380-387
    • /
    • 2004
  • The preparation of $CaSO_4$ nanoparticle by vesicles formed spontaneously in cationic OTAC and anionic ADS mixed surfactant solution whose ratio is 0.3/0.7 is investigated. Added electrolytes for preparing nanoparticles reduce vesicle size about 200-300 nm comparing with that of pure vesicle whose size is 700-800 nm by DLS. The core of vesicles has 200 nm size and acts as nanoreactors which same size of monodisperse $CaSO_4$ nanopaticles are formed. Although $CaSO_4$ particles are formed at the outer of vesicles, they are very large and amorphous. The formed particles are identified with XRD analysis after separation due to coinciding with $CaSO_4$ particles.

A Comparative Analysis of Images by Changing Density and Administrative Dosage of $BaSO_4$ in the Small Bowel Series Using Methylcellulouse (Methylcellouse를 이용한 소장조영 검사시 황산바륨의 농도(%W/V)와 투여량의 변화에 따른 영상의 비교 분석)

  • Lee, Y.S.;Yoo, H.S.;Son, S.Y.;Kang, H.W.;Hong, J.B.
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.68-72
    • /
    • 1997
  • Small bowel series using methylcellulose are considered a better technique than using other contrast media considering a significant decrease of transit time of $BaSO_4$ and that of the necessary time for the examination. We investigated the mean transit time of $BaSO_4$, maximum luminal diamenter of small bowel, optical density and flocculation frequency after adminstratting 100 ml of 120% $BaSO_4$ to 20 pts), 150 ml of 70% $BaSO_4$ to 20 pts and 200 ml of $BaSO_4$ with 600 ml of mechylcellulose. It was shown that the technique using 150 ml of 70% $BaSO_4$ had the best result. When we apply a adequate amount of density(w/v%), dosage to pts for small bowel series using MC, we can decrease an examination time and have the better image due to double contrast. It is considered that a more study to lower the density of 70% $BaSO_4$ is necessary.

  • PDF

Chemical characteristics of PM2.5 fine particles collected at 1100 site of Mt. Halla during spring seasons between 1998 and 2004 (1998-2004년 봄철에 한라산 1100 고지에서 채취한 PM2.5 미세먼지의 화학 특성)

  • Kim, Won-Hyung;Kang, Chang-Hee;Hong, Sang-Bum;Ko, Hee-Jung;Lee, Won
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • The water soluble components were analyzed in the $PM_{2.5}$ fine particles collected at the 1100 site of Mt. Halla for the spring seasons between 1998 and 2004. The $PM_{2.5}$ mass concentrations were within $13.4{\pm}9.6{\sim}21.7{\pm}20.0{\mu}g/m^3$, and the concentrations of ionic components were in the order of nss-$SO{_4}^{2-}$ > $NH{_4}{^+}$ > $NO{_3}{^-}$ > $Ca^{2+}$ > $K^+$ > $Na^+$ > $Cl^-$ > $Mg^{2+}$, in which the concentration of nss-$SO{_4}^{2-}$($3.41{\pm}2.42{\mu}g/m^3$) was the highest. The concentrations of $NH{_4}{^+}$, $SO{_4}^{2-}$, and $NO{_3}{^-}$, the secondary pollutants, were respectively 0.60~1.50, 2.86~4.42, and $0.24{\sim}1.57{\mu}g/m^3$, which had occupied 88 % of the total ionic components, on the other hand, the concentrations of marine species were less than 5 %. The nss-$SO{_4}^{2-}$ showed the high correlation with $NH{_4}{^+}$, $K^+$, so that $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ might exist in the form of $(NH_4)_3H(SO_4)_2$ and $(NH_4)_2SO_4$ in fine particles. From the backward trajectory analysis, in case of high concentrations of $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ simultaneously, the air masses were originated and stagnated at the east region of China for a while, then moved into the atmosphere of Jeju. However, in case of $NO{_3}{^-}$ and nss-$Ca^{2+}$, the air masses originated at China and Siberia were moved into Jeju via the eastern China.

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt (죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성)

  • Kim, Hag-Lyeol;Lee, Seong-Jae;Lee, Jung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1248-1256
    • /
    • 2014
  • The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.