• Title/Summary/Keyword: [O]/[$N_2$] ratio

Search Result 1,309, Processing Time 0.033 seconds

Effects of Operational Condition on N2O Production from Biological Nitrogen Removal Process (생물학적 질소제거시 운전조건의 변화가 N2O 발생에 미치는 영향)

  • Jang, Hyun-Sup;Kim, Tae-Hyeong;Lee, Myoung-Joo;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2009
  • The objectives of this research were focused on the effects of various operating parameters on nitrous oxide emission such as C/N ratio, ammonia concentration and HRT in the hybrid and suspension reactors. With the decreasing of C/N ratios, $N_2O$ emission rates in the both processes were increased because organic carbon source for denitrification was depleted. In case of biofilm reactor operated using medium, $N_2O$ release from the nitrification was not affected by the variation of ammonia concentration. But in the suspension reactor, $N_2O$ production from the nitrification was rapidly increased with the increase of ammonia. Nitrite accumulation caused by undesirable nitrification conditions could be a important reason for the increase in the $N_2O$ production from the aerobic reactor. And rapid increase in $N_2O$ production was reflected by the decrease of HRT, similar to the results observed in the results of ammonia loading changes. So it could be said that it is very important to put in consideration both its optimum conditions for wastewater treatment efficiency and suitable conditions for $N_2O$ diminish, simultaneously, in order to development an eco-friendly and advanced wastewater treatment, especially in BNR process.

An Analysis of Long-term Trends in Precipitation Acidity of Seoul, Korea (서울지역 강수 산성도의 장기적인 경향분석)

  • 강공언;임재현;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • Precipitation samples were collected by the wet- only event sampling method from Seoul during September 1991 to April 1995. These samples were analyzed for the concentrations of the major ionic components (N $O_3$$^{[-10]}$ , N $O_2$$^{[-10]}$ , S $O_4$$^{2-}$, C $l^{[-10]}$ , $F^{[-10]}$ , N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, and N $H_4$$^{+}$), pH, and electric conductivity. During the study period, a total of 182 samples were collected, but only 163 samples were used for the data analysis via quality assurance of precipitation chemistry data. The volume-weighted pH was found to be 4.7. The major acidifying species from our precipitation studies were identified to be non-seasalt sulfate (84$\pm$9 $\mu$eq/L) and nitrate (24$\pm$2 $\mu$eq/L) except for chloride. Because the Cl/Na ratio in the precipitation was close to the ratio in seawater. If all of the non-seasalt sulfate and nitrate were in the form of sulfuric and nitric acids, the mean pH in the precipitation could have been as low as 3.7 lower than the computed value. Consequently, the difference between two pH values indicate that the acidity of precipitation was neutralized by alkaline species. The equivalent concentration ratio of sulfate to nitrate was 3.5, indicating that sulfuric and nitric acids can comprise 78% and 22% of the precipitation acidity, respectively. Analysis of temporal trend in the measured acidity and ionic components were also performed using the linear regression method. The precipitation acidity generally showed a significantly decreasing trend, which was compatible with the pattern of the ratio (N $H_4$$^{+}$+C $a^{2+}$)/ (nss-S $O_4$$^{2-}$+N $O_3$$^{[-10]}$ ).).

  • PDF

Capacitance Swing and Capacitance Ratio of GaN-Based Metal-Semiconductor-Metal Two-Dimensional Electron Gas Varactor with Different Dielectric Films

  • Tien, Chu-Yeh;Kuei, Ping-Yu;Chang, Liann-Be;Hsu, Chien-Pin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1720-1725
    • /
    • 2015
  • The performance of the AlGaN/GaN MSM-2DEG varactor with different dielectric films deposited by the E-beam deposition is investigated in detail. The capacitance swing and the capacitance ratio of the varactor without dielectric film as well as with, SiO2, Gd2O3, and Si3N4 films, respectively, are determined by electrodes of varying areas. The maximum capacitance, the minimum capacitance and the capacitance ratios are proportional to the increasing of the electrode areas. The capacitance ratio determined by the maximum and the minimum capacitance is found to be 18.35 (with Si3N4 dielectric film) and 149.51 (without dielectric film), respectively. The transition voltages of the fabricated varactors are almost the same for a bias voltage of about ±5 V and leakage current can be lower three orders of magnitude while the varactors with dielectric films. The tunability of the capacitance ratio makes the AlGaN/GaN MSM-2DEG varactor with a dielectric film highly useful in multirange applications of a surge free preamplier.

Fertility Management of Flooded Rice Soil:A Proposal to Minimize The Biological Production Potential-Performance Gap of High Yielding Varieties (수도작(水稻作)을 위(爲)한 비옥도관리(肥沃度管理) - 다수성(多收性) 수도(水稻)의 생산능력(生産能力) 최대발현(最大發現)을 위한 시비량(施肥量) 결정법(決定法) 시안(試案) -)

  • Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.3
    • /
    • pp.153-167
    • /
    • 1979
  • Proposal on the ways to determine the optimum levels of nutrients application on rice to maximize the yield was made paying attention on the desirable ratios among the major nutrients including N (organic matter) K, $SiO_2$, Ca, Mg. Following are the summary of the discussion. 1. For the higher yields, the balanced nutrients absorption is important. 2. Silica plays an important role in leading the applied N to increased yield. 3. Level of N application should be determined taking account of soil organic matter and abailable silicate contents. The higher the ratio of $SiO_2$/O.M. the more N can be applied for higher yield. 4. Different rice cultivars responds to the ratio of $SiO_2$/O.M. in soils, in different manner, in translating the applied N into yield. 5. By altering the ratio of $SiO_2$/O.M. through the application of silicate fertilizer or organic matter, the requirement of N in accordance with varietal characteristics can be determined. 6. When amount of N determined by above mentioned approaches, level of K application can be determined upon the basis of the ratio of $K/\sqrt{Ca+Mg}$ in soils.

  • PDF

Determination of Diamond Wheel Life in Ceramic Grinding (세라믹재 연삭시 다이아몬드 휠의 수명 판정)

  • 임홍섭;유봉환;공재향;김홍원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • In order to investigate the characteristics of diamond wheel grinding of ceramic materials, grinding resistance, surface roughness of ground surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of $Al_2O_3$, cutting edge ratio is bigger than that of $ZrO_2$ and $Si_3N_4$. That's because $Al_2O_3$ has a characteristic of low fracture toughness and bending stress.

A Study on the Determination of Diamond Wheel Life in Ceramic Grinding (세라믹 연삭에서 다이아몬드 휠의 수명 판정에 관한 연구)

  • 임홍섭;유봉환;소의열;이근상;사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.308-313
    • /
    • 2002
  • In order to investigate the characteristics of grinding and diamond wheel grinding ceramic materials, grinding resistance, surface roughness of worked surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of A1$_2$O$_3$, cutting edge ratio is begger than that of ZrO$_2$and Si$_3$N$_4$. That's because A1$_2$O$_3$has a characteristics of low fracture toughness and bending stress.

  • PDF

Studies on Photocatalytic Thin Films($TiO_2$, TiO-N) Manufactured by DC Magnetron Sputtering Method and it's Characteristics for Removal of Pollutants (DC 마그네트론 스퍼터링법을 이용한 광촉매박막($TiO_2$, TiO-N)제조 및 오염물질 제거에 관한 연구)

  • Jeong, Weon-Sang;Park, Sang-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • [ $TiO_2$ ] was deposited by DC magnetron sputtering on glass surface under various sputtering parameters such as discharge power($0.6{\sim}5.2\;kW$, substrate temperature($R.T{\sim}350^{\circ}C$), Ar and $O_2$ flow ratio with $0{\sim}50\;sccm$($Ar+O_2$ 90 sccm) and about 1 mtorr of pressure. TiO-N thin film was prepared under same sputtering conditions for $TiO_2$ thin film except flow ratio($Ar+O_2+N_2$ 90 sccm). The sheet resistance of thin films deposited under these parameters was measured to analyze electronic characteristic and thin film's thickness(${\alpha}$-step), surface roughness(AFM) and formation construction(FE-SEM, XRD) were also measured to draw optimal sputtering parameters. In order to evaluate photo-activity of thin film($TiO_2$, TiO-N) made in optimal parameters for removal of pollutants, toluene among VOCs and Suncion Yellow among reactive dyes were chosen to probe organic compounds for photo-degradation. It was shown that the photo-catalytic thin films had a significant photo-activation for the chosen contaminants and especially TiO-N thin film showed maximum efficiency of 33% for toluene(5 ppm) removal in visible-light range.

Equivalence Ratio Measurements in Gas Spray Using Laser Raman Scattering (Laser Raman Scattering을 이용한 가스 분무내 당량비 계측에 관한 연구)

  • Jin, S.H.;Park, K.S.;Song, J.I.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.7-14
    • /
    • 1997
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air mixture in injected spray. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity signal. Raman shifts and Raman scattering cross -sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ are measured precisely. Our results show an excellent agreement with those of other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air shows that $O_2:N_2=0.206:0.794$. We used gas injector which was operated at 1 bar. Methane is used as a fuel. Spray region is $10mm\times37mm$ and this region is divided into 80 points. In Raman signals are obtained and ensemble averaged for each point. 3-d and contour plot of distribution of equuivalence ratio is presented. Our measured results show that the equivalence ratio of methane/air mixture in methane-rich region is reasonable. However, more study is necessary for methane-lean region because background noise level is almost same as Raman intensity of methane.

  • PDF

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF