• Title/Summary/Keyword: [Ca(2+)]i mobilization

Search Result 54, Processing Time 0.022 seconds

Depression of $Ca^{2+}$ Influx in Complement C5a-stimulated Neutrophils by Calmodulin Inhibitors

  • Ham, Dong-Suk;Kim, Hyun-Ho;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.109-117
    • /
    • 1998
  • Role of $Ca^{2+}$/calmodulin complex in intracellular $Ca^{2+}$ mobilization in neutrophils has not been clearly elucidated. In this study, effects of chlorpromazine, trifluoperazine and imipramine on the intracellular $Ca^{2+}$ mobilization, including $Ca^{2+}$ influx, in C5a-activated neutrophils were investigated. Complement C5a- stimulated superoxide production and myeloperoxidase release in neutrophils were inhibited by chlorpromazine, trifluoperazine and imipramine, except no effect of imipramine on myeloperoxidase release. A C5a-elicited elevation of [$Ca^{2+}$]i in neutrophils was inhibited by chlopromazine, trifluoperazine, imipramine, staurosporine, genistein, EGTA, and verapamil but not affected by pertussis toxin. The intracellular $Ca^{2+}$ release in C5a-activated neutrophils was not affected by chlorpromazine and imipramine. Chlorpromazine and imipramine inhibited $Mn^{2+}$ influx by C5a-activated neutrophils. Thapsigargin-evoked $Ca^{2+}$ entry was inhibited by chlorpromazine, trifluoperazine, imipramine, genistein, EGTA and verapamil, while the effect of staurosporine was not detected. The results suggest that $Ca^{2+}$/calmodulin complex is involved in the activation process of neutrophils. The depressive action of calmodulin inhibitors on the elevation of cytosolic $Ca^{2+}$ level in C5a-activated neutrophils appears to be accomplished by inhibition of $Ca^{2+}$ influx from the extracellular medium.

  • PDF

Antiplatelet Activity of KR-32558, a Novel Selective Sodium/hydrogen Exchanger-1 Inhibitor

  • Lee, Mi-Yea;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • We investigated the antiplatelet effect of a newly synthesized guanidine derivative KR-32558, a sodium-hydrogen exchanger-1 (NHE-1) inhibitor, together with the elucidation of the possible mechanisms of action. KR-32558 concentration -dependently inhibited the aggregation of washed rabbit platelets induced by collagen (10 ${\mu}g/ml$) with an $IC_{50}$ value of 85.9 ${\mu}M$, but with much weaker potency against aggregation induced by thapsigargin (0.5 ${\mu}M$) or A23187 (5 ${\mu}M$). And had no effect on platelet aggregation induced by arachidonic acid (100 ${\mu}M$), thrombin (0.05 U/ml) and U46619 (1 ${\mu}M$) up to 100 ${\mu}M$. KR-32558 completely inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at concentration of 100${\mu}iM$. Taken together, these observation suggest that KR-32558 selectively inhibited collagen-mediated platelet aggregation by blocking the cytoplasmic calcium mobilization in addition to NHE-1 inhibition.

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Role of Calcium and Protein Kinase C in Platelet Activating Factor-induced Activation of Peritoneal Macrophages (Platelet Activating Factor에 의한 대식세포의 활성화에 있어서 칼슘과 Protein Kinase C의 역할)

  • Lee, Chung-Soo;Kim, Young-Jun;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.107-120
    • /
    • 1993
  • Particulate or soluble stimuli appear to stimulate phagocytic cell's response by the change of $Ca^{2+}$ mobilization and by the activation of protein kinase C. In contrast, it is reported that activation of protein kinase C could attenuate agonist-stimulated elevation of $Ca^{2+}i$ in neutrophils. PAF elicited an increase of $Ca^{2+}i$ in peritoneal macrophages in a dose dependent fashion and $Ca^{2+}$ extrusion was accompanied. PAF-induced elevation of $Ca^{2+}i$ was not affected by TMB-8, verapamil and TTX. TEA stimulated PAF-induced mobilization of $Ca^{2+}i$ and delayed lowering of $Ca^{2+}i$. Five mM EGTA almost completely inhibited PAF-induced mobilization of $Ca^{2+}i$. After the addition of PAF, membrane permeability was markedly increased up to 5 min and then slowly increased. PAF-induced LDH release was slightly decreased by EGTA plus TMB-8. PAF-stimulated superoxide generation was inhibited by EGTA, TMB-8 and verapamil but not affected by TTX and TEA. PAF-induced elevation of $Ca^{2+}i$, increased membrane permeability and superoxide generation were inhibited by IQSP, chlorpromazine and propranolol. PAF-induced LDH release was significantly inhibited by chlorpromazine and minimally decreased by propranolol. After the pretreatment with PMA, the stimulatory effect of PAF on the elevation of $Ca^{2+}i$ and LDH release in macrophages was significantly decreased. These results suggest that PAF may exert the stimulatory action on peritoneal macrophages of mouse by the elevation of $Ca^{2+}i$ and by the activation of protein kinase C. Preactivation of protein kinase C appears to attenuate the stimulatory action of PAF on macrophage response.

  • PDF

Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2017
  • Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular $Ca^{2+}$-antagonists. In addition, cordycepin reduced collagen-elevated $[Ca^{2+}]_i$ mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br-cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased $IP_3RI$ ($Ser^{1756}$) phosphorylation, indicating inhibition of $IP_3$-mediated $Ca^{2+}$ release from internal store via the $IP_3RI$, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the reduction of $[Ca^{2+}]_i$ mobilization is caused by the cAMP/A-kinase-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP ($Ser^{157}$) known as PKA substrate, but not VASP ($Ser^{239}$) known as PKG substrate. Cordycepin-induced VASP ($Ser^{157}$) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to ${\alpha}IIb/{\beta}_3$, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS. These results suggest that the inhibition of ${\alpha}IIb/{\beta}_3$ activation is caused by the cAMP/A-kinase-dependent VASP ($Ser^{157}$) phosphorylation. In conclusion, these results demonstrate that inhibitory effects of cordycepin on platelet activation were due to inhibition of $[Ca^{2+}]_i$ mobilization through cAMP-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation and suppression of ${\alpha}IIb/{\beta}_3$ activation through cAMP-dependent VASP ($Ser^{157}$) phosphorylation. These results strongly indicated that cordycepin might have therapeutic or preventive potential for platelet activation-mediated disorders including thrombosis, atherosclerosis, myocardial infarction, or cardiovascular disease.

Lysophosphatidylcholine Attenuates Endothelium-dependent Relaxation Responses through Inhibition of ACh-induced Endothelial $[Ca^{2+}]_i$ Increase

  • Kwon, Seong-Chun;Lee, Yong-Ho;Nam, Taick-Sang;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • Lysophosphatidylcholine (LPC), which accumulates in atherosclerotic arteries, has been reported to inhibit endothelium-dependent relaxation (EDR) in many different species. However, the underlying mechanism of LPC-induced inhibition of EDR is still uncertain. In the present study, we measured simultaneously both isometric tension and cytosolic free $Ca^{2+}$ ($[Ca^{2+}]_i$) in rabbit carotid strips, and examined the effect of LPC on tension and $[Ca^{2+}]_i$. In carotid strips with intact-endothelium, high $K^+$ (70 mM) increased both tension and $[Ca^{2+}]_i$, and cumulative addition of acetylcholine (ACh) from 0.1 to $10{\mu}M$ induced dose dependent increase of $[Ca^{2+}]_i$ with concomitant relaxation. In the presence of L-NAME (0.1 mM), ACh increased $[Ca^{2+}]_i$ without affecting the amplitude of high $K^+-induced$ tension. These ACh-induced change of $[Ca^{2+}]_i$ and tension was abolished by removal of endothelium or 10 nM 4-DAMP (muscarinic receptor antagonist) pretreatment. Pretreatment of LPC ($10{\mu}M$) inhibited ACh ($10{\mu}M$)-induced change of tension and $[Ca^{2+}]_i$ in endothelium-intact carotid artery. On the other hand, LPC had no effect on ACh-induced change of tension and $[Ca^{2+}]_i$ in endothelium denuded artery. In $Ca^{2+}$-free external solution, ACh transiently increased $[Ca^{2+}]_i$, and pretreatment of LPC significantly inhibited ACh-induced transient $[Ca^{2+}]_i$ change. Based on the above results, it may be concluded that LPC inhibits the ACh-induced $[Ca^{2+}]_i$ change through inhibition of $Ca^{2+}$ mobilization in vascular endothelial cells, resulting in decreased production of NO and concomitant inhibition of endotheliumdependent vascular relaxation.

Inhibitory Effect of Scopoletin on U46619-induced Platelet Aggregation through Regulation of Ca2+ Mobilization

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Platelet aggregation is essential for hemostatic process in case of blood vessels damages. However, excessive platelet aggregation can cause cardiovascular disorders including atherosclerosis, thrombosis and myocardial infarction. Scopoletin is usually found in the roots of genus Scopolia or Artemisia, and is known to have anticoagulant and anti-malarial effects. This study investigated the effect of scopoletin on human platelet aggregation induced by U46619, an analogue of thromboxane $A_2(TXA_2)$. Scopoletin had anti-platelet effects by down-regulating $TXA_2$ and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), the aggregation-inducing molecules generated in activated platelets. On the other hand, scopoletin increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are known to be intracellular $Ca^{2+}$ antagonists. This resulted in inhibition of fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in U46619-induced human platelet aggregation. In addition, scopoletin inhibited the release of adenosine trisphosphate (ATP) in dose-dependent manner. This result means that the aggregation amplification activity through the granule secretion in platelets was suppressed by scopoletin. Therefore, we demonstrated that scopoletin has a potent antiplatelet effect and is highly likely to prevent platelet-derived vascular disease.

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF

Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets

  • Lee, Dong-Ha;Kim, Hyun-Hong;Cho, Hyun-Jeong;Yu, Young-Bin;Kang, Hyo-Chan;Kim, Jong-Lae;Lee, Jong-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.223-231
    • /
    • 2014
  • In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its $IC_{50}$ value was $175{\mu}g/ml$. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated $[CA^{2+}]_i$ mobilization and thromboxane $A_2$ ($TXA_2$) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated $[CA^{2+}]_i$ level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor ($IP_3R$) phosphorylation. These results suggest that the inhibition of $[CA^{2+}]_i$ mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of $IP_3R$. CE-WIB801C suppressed $TXA_2$ production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and $TXA_2$ synthase (TXAS). These results suggest that the inhibition of $TXA_2$ production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent $CA^{2+}$-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF