• Title/Summary/Keyword: [$^3[H]$Rauwolscine

Search Result 3, Processing Time 0.019 seconds

Pharmacological Characterization of (10bS)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline Oxalate (YSL-3S) as a New ${\alpha}_2$-Adrenoceptor Antagonist

  • Chung, Sung-Hyun;Yook, Ju-Won;Min, Byung-Jun;Lee, Jae-Yeol;Lee, Yong-Sup;Jin, Chang-Bae
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • ${\alpha}_2$-Adrenoceptor antagonists, which can enhance synaptic norepinephrine levels by blocking feedback inhibition processes, are potentially useful in the treatment of disease states such. as depression, memory impairment, impotence and sexual dysfunction. (10bS)-1,2,3,5,6,10b-Hexahydropyrrolo[2,1-a]isoquinoline oxalate (YSL-3S) was evaluated in several in vitro biological tests to establish its pharmacological profile of activities as an ${\alpha}_2$-adrenoceptor antagonist. Saturation binding assay revealed that$^{3}[H]$rauwolscine bound to the $\alpha$$_2$-adrenoceptors with a Kd value of 6.3$\pm$0.5 nM and a Bmax value of 25l$\pm$39 fmol/mg protein in rat cortical synaptic membranes. Competitive binding assay showed that YSL-3S inhibited the binding of$^3[H]$rauwolscine (1 nM) in a concentration-dependent manner with a Ki value of 98.2$\pm$12.1 nM while it did not inhibit the binding of [$^3$H]cytisine (1.25 nM) to neuronal nicotinic cholinergic receptors. The Ki values of yohimbine, clonidine and norepinephrine for $^3[H]$rauwolscine binding were 15.8$\pm$1.0, 40.1$\pm$5.9 and 40.0$\pm$11.5 nM, respectively. In addition, the binding affinity of YSL-3S for ${\alpha}_2$-adrenoceptors was higher than that of its antipode and the racemic mixture. The functional activity of YSL-3S at the presynaptic ${\alpha}_2$-adrenoceptors was assessed using the prostatic portion of the rat vas deferens. Clonidine inhibited field-stimulated contractions of the vas deference in a dose-dependent manner. The presence of YSL-3S or yohimbine caused a parallel, rightward the dose-response curve of clonidine in a dose-dependent manner, indicating an antagonistic action at the presynaptic ${\alpha}_2$-adrenoceptors. The $pA_2$values of yohimbine and YSL-3S were 7.66$\pm$0.13 and 6.64$\pm$0.18, respectively. The results indicate that YSL-3S acts as a competitive antagonist at presynaptic ${\alpha}_2$ -adrenoceptors with a potency approximately ten times lower than yohimbine, but is devoid of binding affinity for neuronal nicotinic cholinergic receptors.

  • PDF

A New Receptor for site Clonidine in the Eel, Anguilla japonica Intestine (뱀장어(Anguilla japonica)장의 상피세포막에 존재하는 새로운 clonidine 결합 수용체에 관한 연구)

  • Kim, Hung-Tae;Seo, Jung-Soo;Park, Nam-Gyu;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • A novel clonidine binding sites were characterized in the intestinal membrane isolated from seawater eels, Anguilla japonica. The specific clonidine binding sites consisted of at least two classes, high affinity ($K_d=1.4{\pm}0.3$ nM n = 5) and low affinity ($K_d=175{\pm}34$ nM n = 5) sites. The specific binding of 2 nM [$^3H$]clonidine was most enhanced at $20^{\circ}C$ and pH 7.5, and reversed by unlabelled clonidine. Such binding was hardly inhibited by adrenaline, yohimbine or rauwolscine, indicating that most binding sites are distinct from $\alpha_2$-adrenoceptor. The specific clonidine binding sites was inhibited by various imidazoline/guanidinium drugs, indicating existence of imidazoline/guanidinium receptive sites (IGRS) or imidazoline receptors in the eel intestine. Competition experiments revealed that rank order to displace 2 nM [$^3H$]clonidine from their binding sites was as follows : guanabenz > cirazoline = naphazoline = UK14,304 = ST587 $\geq$ clonidine $\geq$ idazoxan = RX821002 = tolazoline > ST93 = oxymetazoline = amiloride = ST91 > yohimbine = efaroxan = rauwolscine $\geq$ adrenaline = ST567 = histamine = agmatine. Although physiological role of IGRS is not clear yet even in mammalian cell/tissues, eel intestine may be a good model to elucidate how the IGRS act in the cell and to decide what is the endogenous ligand for the IGRS.

  • PDF

Pharmacological Evaluation of the Mechanism of ${\alpha}-Adrenoceptor-Mediating$ Sleep in Chickens (${\alpha}$-아드레나린 수용체의 매개에 의한 병아리 수면에 대한 약리학적 고찰)

  • Jeong, S.H.;Sohn, U.D.;Song, C.S.;Hong, K.W.
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.15-21
    • /
    • 1984
  • It was aimed to study the effects of ${\alpha}_2-adrenoceptor$ agonists on the sleeping time in $one{\sim}two-day-old$ chickens. Furthermore, it was also evaluated whether ${\alpha}_1-adrenoceptor$ agonist and antagonist might affect the sleeping in the chickens and discussed in relation with opiate receptor. 1) Guanabenz, clonidine, guanfacine and B-HT 933 decreased the latency of the loss of righting reflex in a dose-dependent manner, but B-HT 920 and oxymetazoline slightly prolonged it. 2) ${\alpha}_2-Adrenoceptor$ agonists produced dose·related increase in sleeping time. The potency was guanabenz>clonidine>oxymetazoline${\geq}$B-HT 933${\geq}$B-HT 920>guanfacine in this order. 3) ${\alpha}_2-Adrenoceptor$ antagonists decreased guanabenz-induced sleeping time in a dose ·dependent manner. The rank order of ${\alpha}_2-adrenoceptor$ antagonists was yohimbine>rauwolscine>piperoxan${\geq}$RX 781094. 4) Sleeping time caused by both ethanol and hexobarbital was not affected by yohimbine in chickens. 5) Methoxamine and phenylephrine showed little significant effect on the guanabenz-induced sleeping time. However, prazosin increased it. Paradoxically, corynanthine rather caused to decrease it. These results suggest that the stimulation of central ${\alpha}_2-adrenoceptor$ mediates sleeping, however it is remained uncertain in the role of central ${\alpha}_1-adrenoceptor$ in chickens. In addition, the one~two-day-old chickens may be considered as a useful, inexpensive and simple experimental model to evaluate the in vivo pharmacological action of the ${\alpha}_2-adrenoceptor$ agonist and antagonist related to sedation.

  • PDF