• Title/Summary/Keyword: , Simulation Analysis

Search Result 20,592, Processing Time 0.048 seconds

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

The Analysis of Successional Trends by Topographic Positions in the Natural Deciduous Forest of Mt. Chumbong (점봉산(點鳳産) 일대 천연활엽수림(天然闊葉樹林)의 지형적(地形的) 위치(位置)에 따른 천이(遷移) 경향(傾向) 분석(分析))

  • Lee, Won Sup;Kim, Ji Hong;Jin, Guang Ze
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.655-665
    • /
    • 2000
  • Taking account of the structural variation on species composition by topography, the successional trends were comparatively analyzed for the three topographic positions (valley, mid-slope, and ridge) in the natural deciduous forest of Mt. Chumbong area. The analysis was based upon the subsequent process of generation replacement by understory saplings and seedlings over the overstory trees which will be eventually fallen down. This study adopted the plot sampling method, establishing twenty $20m{\times}20m$ quadrats and collecting vegetation and site data on each different topographic position. The transition matrix model, which was modified from the mathematical theory of Markov chain, was employed to analyze the successional trends and thereafter to predict the overstory species composition in the future for each different topographic position. In valley, the simulation indicated the remarkable decrease in the proportion of species composition of present dominants Quercus mongolica and Fraxinus mandshurica from current 23% and 21% to around 4% of each at the steady state, which is predicted to take less than 200 years. On the other hand, the proportion of such species as Abies holophylla, Acer mono, Tilia amurensis, and Ulmus laciniata will increase at the steady state. In mid-slope, the result showed the remarkable decrease in the proportion of Juglans mandshurica, Kalopanax pictus, and Tilia amurensis from current 15%, 8%, and 15% to 2%, 1%, and 5%, respectively, at steady state predicted to take more than 250 years. In ridge, the current dominant Quercus mongolica was predicted to be decreased dramatically from 58% to 8% at steady state which could be achieved about 200 years. On the contrary, the proportion of Acer mono and Tilia amurensis will be increased from current 4% and 3% to more than 20% and 40%, respectively, at the steady state. Overall results suggested that the study forest is more likely seral rather than climax community. Even though a lot of variation is inevitable due to various kinds of site and vegetation development, the study forest is considered to be more than 200 years away from the steady state or climax in terms of overstory species composition.

  • PDF

Binding Mode Analysis of Bacillus subtilis Obg with Ribosomal Protein L13 through Computational Docking Study

  • Lee, Yu-No;Bang, Woo-Young;Kim, Song-Mi;Lazar, Prettina;Bahk, Jeong-Dong;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2009
  • Introduction: GTPases known as translation factor play a vital role as ribosomal subunit assembly chaperone. The bacterial Obg proteins ($Spo{\underline{0B}}$-associated ${\underline{G}}TP$-binding protein) belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the new target for antibacterial drug. The majority of bacterial Obgs have been commonly found to be associated with ribosome, implying that these proteins may play a fundamental role in ribosome assembly or maturation. In addition, one of the experimental evidences suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein (BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal subunit in Escherichia coli. In order to investigate binding mode between the BsObg and the BsL13, protein-protein docking simulation was carried out after generating 3D structure of the BsL13 structure using homology modeling method. Materials and Methods: Homology model structure of BsL13 was generated using the EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in order to predict a reasonable binding mode. The solvated energy minimization calculation of the docked conformation was carried out to refine the structure. Results and Discussion: The possible binding conformation of BsL13 along with activated Obg fold in BsObg was predicted by computational docking study. The final structure is obtained from the solvated energy minimization. From the analysis, three important H-bond interactions between the Obg fold and the L13 were detected: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The interaction between the BsObg and BsL13 structures were also analyzed by electrostatic potential calculations to examine the interface surfaces. From the results, the key residues for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. Conclusion and Prospects: In this study, we have focused on the binding mode of the BsObg protein with the ribosomal BsL13 protein. The interaction between the activated Obg and target protein was investigated with protein-protein docking calculations. The binding pattern can be further used as a base for structure-based drug design to find a novel antibacterial drug.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Analysis of Site Condition in Domestic Trade Port for Operation of Mobile Harbor (모바일하버 운영을 위한 국내 무역항 후보지 분석)

  • Lee, Joong-Woo;Gug, Seung-Gi;Jung, Dae-Deug;Yang, Sang-Young;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.781-786
    • /
    • 2010
  • In this study, a new concept of ocean transport system, called the mobile harbor serving for a short distance transport of containers with cargo handling cranes between mother containerships and coastal ports, is introduced. Instead of direct berthing a very large containership at the coastal port, Mobile Harbor is moving to the offshore mooring basin with enough water depth condition. Therefore, investigation of the coastal environment, technical condition and limitation of the domestic trade ports for the application of Mobile Harbor, is essential process. To figure out the accessibility of mobile harbor, the environmental conditions, the cargo handling capacity and marine traffic volume and flow pattern has been analyzed with the tools for marine traffic simulation and virtual navigation aids system. The most proper Mobile Harbor mooring areas among trade ports of the south and east coast are selected by analyzing the obtained information and evaluating its application: (1) Under natural environmental conditions such as air and sea weather, three candidate areas are selected such as Masan port, Ulsan port, and Busan(New port) port. (2) Under marine traffic and appropriateness of water facilities, three candidate areas are selected as Mokpo port, Busan(New port) port, and Donghae & Mookho port (3) For a region-based analysis considering handling capacity and the local managed trade ports in vicinity, three candidate areas are selected as Busan region, Yosu & KwangYang region, and Mokpo region. Through this study, the basic guideline for selection of optimum trade port and offshore mooring basin for mothership and Mobile Harbor is recommended. In order to apply the Mobile Harbor to the real water, navigaton aids as the virtual route identification with AIS must be introduced for maritime safety in the vicinity of Mobile Harbor area which berthing and cargo handling is being conducted.

3-Dimensional Verification Technique for Target Point Error (자기공명영상기반 겔 선량측정법을 이용한 3차원적 목표 중심점 점검기술)

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2011
  • For overall system test, hidden-target test have been used using film which leads to inherent analysis error. The purpose of our study is to quantify this error and to propose gel dosimeter based verification technique for 3-dimensional target point error. The phantom was made for simulation of human head and this has ability to equip 10 gel-dosimeter. $BANGkit^{TM}$ which we are able to manufacture whenever it is needed as well as to easily change the container with different shapes was used as a gel dosimeter. The 10 targets were divided into two groups based on shapes of areas with a planned 50% isodose line. All treatment and analysis was performed three times using Novalis and $BrainSCAN^{TM}$. The target point error is $0.77{\pm}0.15mm$ for 10 targets and directional target point error in each direction is $0.54{\pm}0.23mm$, $0.37{\pm}0.08mm$, $0.33{\pm}0.10mm$ in AP (anterior-posterior), LAT (lateral), and VERT (vertical) direction, respectively. The result of less than 1 mm shows that the treatment was performed through each precise step in treatment procedure. In conclusion, the 3-dimensional target point verification technique can be one of the techniques for overall system test.

A Study on the Forecasting Model on Market Share of a Retail Facility -Focusing on Extension of Interaction Model- (유통시설의 시장점유율 예측 모델에 관한 연구 -상호작용 모델의 확장을 중심으로)

  • 최민성
    • Journal of Distribution Research
    • /
    • v.5 no.2
    • /
    • pp.49-68
    • /
    • 2001
  • In this chapter, we summarize the results on the optimal location selection and present limitation and direction of research. In order to reach the objective, this study selected and tested the interaction model which obtains the value of co-ordinates on location selection through the optimization technique. This study used the original variables in the model, but the results indicated that there is difference in reality. In order to overcome this difference, this study peformed market survey and found the new variables (first data such as price, quality and assortment of goods, and the second data such as aggregate area, and area of shop, and the number of cars in the parking lot). Then this study determined an optimal variable by empirical analysis which compares an actual value of market share in 1988 with the market share yielded in the model. However, this study found the market share in each variables does not reflect a reality due to an assumption of λ-value in the model. In order to improve this, this study performed a sensitivity analysis which adds the λ value from 1.0 to 2.9 marginally. The analyzed result indicated the highest significance with the market share ratio in 1998 at λ of 1.0. Applying the weighted value to a variable from each of the first data and second data yielded the results that more variables from the first data coincided with the realistic rank on sales. Although this study have some limits and improvements, if a marketer uses this extended model, more significant results will be produced.

  • PDF

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.