• Title/Summary/Keyword: (strong) chain transitive map

Search Result 2, Processing Time 0.018 seconds

SOME PROPERTIES OF THE STRONG CHAIN RECURRENT SET

  • Fakhari, Abbas;Ghane, Fatomeh Helen;Sarizadeh, Aliasghar
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • The article is devoted to exhibit some general properties of strong chain recurrent set and strong chain transitive components for a continuous map f on a compact metric space X. We investigate the relation between the weak shadowing property and strong chain transitivity. It is shown that a continuous map f from a compact metric space X onto itself with the average shadowing property is strong chain transitive.

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.