• 제목/요약/키워드: (p, q)-Lucas numbers

검색결과 4건 처리시간 0.024초

NEW THEOREM ON SYMMETRIC FUNCTIONS AND THEIR APPLICATIONS ON SOME (p, q)-NUMBERS

  • SABA, N.;BOUSSAYOUD, A.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.243-257
    • /
    • 2022
  • In this paper, we present and prove an new theorem on symmetric functions. By using this theorem, we derive some new generating functions of the products of (p, q)-Fibonacci numbers, (p, q)-Lucas numbers, (p, q)-Pell numbers, (p, q)-Pell Lucas numbers, (p, q)-Jacobsthal numbers and (p, q)-Jacobsthal Lucas numbers with Chebyshev polynomials of the first kind.

REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS

  • Fatih Erduvan;Refik Keskin
    • Korean Journal of Mathematics
    • /
    • 제31권1호
    • /
    • pp.63-73
    • /
    • 2023
  • In this paper, we determine all repdigits, which are difference of two Pell and Pell-Lucas numbers. It is shown that the largest repdigit which is difference of two Pell numbers is 99 = 169 - 70 = P7 - P6 and the largest repdigit which is difference of two Pell-Lucas numbers is 444 = 478 - 34 = Q7 - Q4.

GENERALIZED LUCAS NUMBERS OF THE FORM 5kx2 AND 7kx2

  • KARAATLI, OLCAY;KESKIN, REFIK
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1467-1480
    • /
    • 2015
  • Generalized Fibonacci and Lucas sequences ($U_n$) and ($V_n$) are defined by the recurrence relations $U_{n+1}=PU_n+QU_{n-1}$ and $V_{n+1}=PV_n+QV_{n-1}$, $n{\geq}1$, with initial conditions $U_0=0$, $U_1=1$ and $V_0=2$, $V_1=P$. This paper deals with Fibonacci and Lucas numbers of the form $U_n$(P, Q) and $V_n$(P, Q) with the special consideration that $P{\geq}3$ is odd and Q = -1. Under these consideration, we solve the equations $V_n=5kx^2$, $V_n=7kx^2$, $V_n=5kx^2{\pm}1$, and $V_n=7kx^2{\pm}1$ when $k{\mid}P$ with k > 1. Moreover, we solve the equations $V_n=5x^2{\pm}1$ and $V_n=7x^2{\pm}1$.

NOTES ON GENERALIZED FIBONACCI NUMBERS AND MATRICES

  • Halim, Ozdemir;Sinan, Karakaya;Tugba, Petik
    • 호남수학학술지
    • /
    • 제44권4호
    • /
    • pp.473-484
    • /
    • 2022
  • In this study, some new relations between generalized Fibonacci numbers and matrices are given. The work is designed in three stages: Firstly, it is obtained a relation between generalized Fibonacci numbers and integer powers of the matrices X satisfying the relation X2 = pX +qI, and also, many results are derived from obtained relation. Then, it is established more general relation between generalized Fibonacci numbers and the square matrices X satisfying the condition X2 = VnX - (-q)nI. Finally, some applications and numerical examples related to the obtained results are given.