• Title/Summary/Keyword: (Transport Network)

Search Result 1,326, Processing Time 0.025 seconds

Preliminary Study Related with Application of Transportation Survey and Analysis by Unmanned Aerial Vehicle(Drone) (드론기반 고속도로 교통조사분석 활용을 위한 기초연구)

  • Kim, Soo-Hee;Lee, Jae-Kwang;Han, Dong-Hee;Yoon, Jae-Yong;Jeong, So-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.182-194
    • /
    • 2017
  • Most of the drone (Unmanned Aerial Vehicle) research in terms of traffic management involves detecting and tracking roads or vehicles. The purpose of analyzing image footage in the transportation sector is to overcome the limitations of the existing traffic data collection system (vehicle detectors, DSRC, etc.). With regards to this, drones are the good alternatives. However, due to limitation in their maximum flight time, they are appropriate to use as a complementary rather than replacing the existing collection system. Therefore, further research is needed for utilizing drones for transportation analysis purpose. Traffic problems often arise from one particular section or a point that expands to the whole road network and drones can be fully utilized to analyze these particular sections. Based on the study on the uses of traffic survey analysis, this study is conducted by extracting traffic flow parameters from video images(range 800~1000m) of highway unit segments that were taken by drones. In addition, video images were taken at a high altitude with the development of imaging technologies.

Study on the Methodology for Extracting Information from SNS Using a Sentiment Analysis (SNS 감성분석을 이용한 정보 추출 방법론에 관한 연구)

  • Hong, Doopyo;Jeong, Harim;Park, Sangmin;Han, Eum;Kim, Honghoi;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.141-155
    • /
    • 2017
  • As the use of SNS becomes more active, many people are posting their thoughts about specific events in their SNS in the form of text. As a result, SNS is used in various fields such as finance and distribution to conduct service satisfaction surveys and consumer monitoring. However, in the transportation area, there are not enough cases to utilize unstructured data analysis such as emotional analysis. In this study, we developed an emotional analysis methodology that can be used in transportation by using highway VOC data, which is atypical data collected by Korea Expressway Corporation. The developed methodology consists of morpheme analysis, emotional dictionary construction, and emotional discrimination of the collected unstructured data. The developed methodology was verified using highway related tweet data. As a result of the analysis, it can be guessed that many information and information about the construction and the accident were related to the highway during the analysis period. Also, it seems that users complain about the delay caused by construction and accident.

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

ROUTE/DASH-SRD based Point Cloud Content Region Division Transfer and Density Scalability Supporting Method (포인트 클라우드 콘텐츠의 밀도 스케일러빌리티를 지원하는 ROUTE/DASH-SRD 기반 영역 분할 전송 방법)

  • Kim, Doohwan;Park, Seonghwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.849-858
    • /
    • 2019
  • Recent developments in computer graphics technology and image processing technology have increased interest in point cloud technology for inputting real space and object information as three-dimensional data. In particular, point cloud technology can accurately provide spatial information, and has attracted a great deal of interest in the field of autonomous vehicles and AR (Augmented Reality)/VR (Virtual Reality). However, in order to provide users with 3D point cloud contents that require more data than conventional 2D images, various technology developments are required. In order to solve these problems, an international standardization organization, MPEG(Moving Picture Experts Group), is in the process of discussing efficient compression and transmission schemes. In this paper, we provide a region division transfer method of 3D point cloud content through extension of existing MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) technology, quality parameters are further defined in the signaling message so that the quality parameters can be selectively determined according to the user's request. We also design a verification platform for ROUTE (Real Time Object Delivery Over Unidirectional Transport)/DASH based heterogeneous network environment and use the results to validate the proposed technology.

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

Establishment and Application of Subway Line Chain OD Using SSA (SSA를 이용한 지하철 노선 Chain OD 구축 및 활용)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.100-111
    • /
    • 2019
  • The existing selected station analysis (SSA) method analyzes the link transfer mode data between origin and destination of individuals passing through stations from a microscopic standpoint. As such, existing SSA is insufficient as it uses integrated analysis using macroscopic data such as subway lines. This research builds a line chain OD based on path search of individual passenger's movement through the subway, and explores means to utilize the findings. First, a method is proposed that searches the traversed subway path from the linked passage modes that the passenger uses and applies the results to SSA line analysis. Compared to the existing SSA, this method provides for analysis of commonly conflicting features such as the line on which the station is passed, and the stations included on the line thanks to the presence of complete information of the individual passenger's traversed path. It also allows for integrated observation of the line chain OD that approaches a certain station. For enhanced understanding, Seoul Metro Line 9 is used as a case study to demonstrate the integrated formulation concept of line chain OD centered around a certain station as well as the macroscopic features of the traversed path that approaches stations included on the line.