• Title/Summary/Keyword: (R,R)-1

Search Result 42,570, Processing Time 0.077 seconds

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Der Vollrauschtatbestand de lege ferenda (완전명정죄 처벌규정의 입법론)

  • Seong, Nak-Hyon
    • Journal of Legislation Research
    • /
    • no.55
    • /
    • pp.137-166
    • /
    • 2018
  • Wenn nach dem starken Trinken etwas strafbares passiert, so ist das Gesamtverhalten als $strafw{\ddot{u}}rdig$ und strafbar anzuerkennen. Aber nach dem Schuldprinzip handelt ohne Schuld, wer bei Begehung der Tat $unf{\ddot{a}}hig$ ist, das Unrecht der Tat einzusehen oder nach dieser Einsicht zu handeln(Koinzidenzprinzip). Die Rechtsfigur der "actio libera in causa" dient dazu, diese in $h{\ddot{a}}ufigen$ $F{\ddot{a}}llen$ als kriminalpolitisch $unerw{\ddot{u}}nscht$ empfundene $L{\ddot{u}}cke$ zu umgehen. Dabei kommt auch dem Vollrauschtatbestand in der Praxis $erh{\ddot{o}}hte$ Bedeutung zu. Der deutsche Gesetzgeber war sich bei der Aufnahme des Vollrauschtatbestandes in das Gesetz durchaus $bewu{\ss}t$, $da{\ss}$ die Vorschrift eine Ausnahme zur Schuldzurechnungsregelung darstellte. Er $w{\ddot{a}}hlte$ jedoch die Form eines $selbst{\ddot{a}}ndigen$ Tatbestandes, um die Durchbrechung des reinen Schuldprinzips $ertr{\ddot{a}}glich$ zu machen. Der Vollrauschtatbestand ist ein abstraktes $Gef{\ddot{a}}hrdungdsdelikt$ -demnach die im Rausch verwirklichte rechtswidrige Tat nur objektive Bedingung der Strafbarkeit ist -, das sachlich eine Schuldzurechnungsregelung $enth{\ddot{a}}lt$, und zwar eine Ausnahme $gegen{\ddot{u}}ber$ die Regelungen ${\ddot{u}}ber$ Schuldzurechnung. Dieser Vollrauschtatbestand ist dennoch als regitime $Erg{\ddot{a}}nzung$ der in Schuldzurechnungsregelungen beschriebenen $Schuldzurechnungsgrunds{\ddot{a}}tze$ anzusehen. Er steht $n{\ddot{a}}mlich$ in Einklang mit dem Schuldgrundsatz, wenn als subjektives Tatbestandsmerkmal des Vollrausches die Kenntnis der $Gef{\ddot{a}}hrlichkeit$ des Rauschzustandes $f{\ddot{u}}r$ die Begehung von Delikten vorausgesetzt wird.

Comparative Study on the Composition of Floral Volatile Components in the Flowering Stages of Robinia pseudoacacia L. (아까시나무(Robinia pseudoacacia L.) 꽃의 개화 단계별 향기성분 조성 비교)

  • Jung, Je Won;Lee, Hyun Sook;Noh, Gwang Rae;Lee, Andosung;Kim, Moon Sup;Kim, Sea Hyun;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • Floral scent emitted from many plants is the critical factors for pollinator attraction and defense for adaptation in environments. The fragrance components of flowers are different in composition by geographical origins, climate factors and the development stages of flowers. In the present study, we investigated the volatile-floral compounds in flowers of Robinia pseudoacacia L. and defined the chemical contribution for flowering periods. The volatile compounds analysis was performed by gas chromatography with mass selective detector after solid phase microextraction (SPME). We reported different compositional features of fragrance compounds according to flowering periods. The abundant compounds identified in stage 1 were ${\alpha}$-pinene (66.80%) and ${\beta}$-pinene (26.53%). Those of the stage 2 were (Z)-${\beta}$-ocimene (37.57%), ${\alpha}$-pinene (15.16%), benzaldehyde (16.63%), linalool (12.13%). The volatiles of stage 3 comprised an abundance of (Z)-${\beta}$-ocimene (64.94%), ${\alpha}$-pinene (9.84%), linalool (8.92%), benzaldehyde (1.71%). Leaf volatiles were distinct from those in the reproductive plant parts by their high relative amount of (E)-${\beta}$-ocimene (23.50%) and (Z)-3-Hexenyl acetate (27.87%). Differences in flower scents of the different stages and leaves are discussed in light of biochemical constraints on volatile chemical synthesis and of the role of flower scent in evolutionary ecology of R. pseudoacacia.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

A Semantic Study on the Soundscape of the Historic Downtown of Daejeon - Focusing on the Bells of Daeheung-dong Cathedral and Enhang-dong Sungsimdang - (대전 원도심 소리풍경에 관한 의미론적 연구 - 대흥동 성당과 은행동 성심당 종소리를 중심으로 -)

  • Kim, Myeong-Shin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.64-75
    • /
    • 2022
  • The purpose of this study is to illuminate the meaning of the soundscapes of two bells, Daeheung-dong Cathedral and Sungsimdang in Eunghang-dong, which are landmarks and attractions in the historic downtown of Daejeon. The study was conducted through field research and recordings, as well as literature studies of related documents and soundscape theory. Daejeon city was developed along with Daejeon Railway Station during the Japanese colonial period in the early 20th century. As the Chungnam Provincial Office moved to Daejeon, Daeheung-dong and Eunhang-dong in Jung-gu, located near Daejeon Station, developed significantly and formed the city centre. As major administrative agencies moved to Seo-gu in the 1990s, the downtown area of Daejeon was on a path of decline, and the decline accelerated with the development of Sejong city. Meanwhile, Daeheung-dong Cathedral and Sungsimdang, founded by refugees during the Korean War, firmly protected the historic downtown area of Daejeon, where the natives left. Daeheung-dong Cathedral, established during the Japanese colonial period, is a local landmark with a history of 100 years in 2019. Sungsimdang, which was created with the backdrop of the Korean War, is also a historical and cultural asset with a history of 60 years and a local landmark selected as the No. 1 tourist attraction in Daejeon. This research, which started from the sound of the bells of Daeheung-dong Cathedral, heard even in the neighboring residential areas, led to the discovery of the bells of Sungsimdang in Eunhang-dong, located across the street. In this paper, the bells of Daeheung-dong Cathedral and Eunhang-dong Sungsimdang have characteristics of soundmarks according to R. Murray Schafer's soundscape sound category. Furthermore, this paper attempted to analyze the meaning of the two bells according to the relatively recent EU soundscape definition. These two bells are signal sounds at the surface level, but are the sound marks of the historic downtown area of Daejeon at the deep level. Although there are outward differences in size, scale, frequency, and famousness, these two bells share a meaning in terms of locality and good influence with the historicity and spatiality of a special relationship. The implication of this study is that the two places should be preserved as local historical and cultural assets not only as visual landmarks but also as sound marks in the urban regeneration or urban development of Jung-gu, Daejeon.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

The Validation of a Commercial Testosterone RIA Test Kits (Testosterone RIA 검사 kit 별 유효성 비교평가)

  • Ryu, Hwa-jin;Shin, Seon-yeong;Cho, Seong-uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.38-41
    • /
    • 2022
  • Purpose Testosterone is a steroid hormone synthesized by the Leydig cells of the testes in men, and by the adrenal cortex and ovaries in women. Testosterone production is regulated by luteinzing hormone secreted by the anterior pituitary gland. In this experiment, the effectiveness of testosterone radioimmunoassay (RIA) kits produced by three companies was evaluated and compared in case the production of testosterone kits was stopped or supply problems occurred. Materials and Methods In October 2021, samples were collected from the patients (n=49) who requested the testosterone RIA test. The experiment was conducted by dividing the patient's sample into low concentration (1.0 ng/mL or less), medium concentration (2.0-4.0 ng/mL) and high concentration (6.0 ng/mL or more). The Testosterone RIA test compared and evaluated the validity of Company A kits used in this hospital and those of Company B and C used in other hospitals. The precision, sensitivity, recovery, linearity and correlation were evaluated for each kit. The testosterone RIA test was carried out in accordance with the insert kit manual for each manufacturer. Results As a result of measuring the precision of the intra assay, the Coefficient of Variation (CV) value of the company A kit was high at 11.4% only in the low concentration sample, and in the case of the company B and C kits, the CV value was less than 10% at low, medium, and high concentrations. In the inter-assay precision measurement, the CV value was less than 15% in both A and C kits, but in the case of the B kit, the CV value exceeded 15% at low and medium concentrations. Sensitivity was 0.13 ng/mL for company A, 0.01 ng/mL for company B, and 0.01 ng/mL for company C, and the linearity of all three kits showed excellent linearity. In the case of recovery rate, all of the A, B, and C company kits showed results that were out of 90-110%. In the case of correlation test, when compared with the company A kit currently use in here, the correlation coefficient (R2) value for the company B kit was 0.9508, and for the company C kit was 0.9352 Conclusion As a result, there was a slight difference in precision at the low concentration sample. The correlation test showed an excellent correlation coefficient. However, it was difficult to secure samples of various concentrations because there were not many tests of testosterone requested at this hospital. So, additional experiments should be carried out by acquiring samples of various concentrations on each laboratory later.

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.