• Title/Summary/Keyword: (Multiple Access)

Search Result 2,393, Processing Time 0.026 seconds

Analysis of Initial Synchronization Performance in OFDMA/TDD Systems (OFDMA/TDD 시스템의 초기 동기 성능 분석)

  • Seung Young-Min;Kim Ki-Nam;Cho Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.410-414
    • /
    • 2006
  • In the present, Orthogonal Frequency Division Multiple Access (OFDMA) that wireless access scheme for high speed data transmission is noticed in mobile communication market and OFDMA/TDD scheme will be used combining Time Division Duplex (TDD) scheme based on OFDMA. The Base Station's receiver synchronizes the symbol timing to anyone user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol and the Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we analyze the ranging code detection performance for each users STO in OFDMA/TDD system. Simulation results show that the more users access and mobile speed increase, the more ranging code detection performance degrades.

  • PDF

Multiple User Authentication based on SecuROS/FreeBSD (SecuROS/FreeBSD 기반 다단계 사용자 인증 시스템)

  • Doo, So-Young;Kim, Jong-Nyeo;Kong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This paper implements Multiple User Authentication System to which the system authenticating with password only has been upgraded. The 4-staged authentication including user ID, password, smart card and access control information, etc. is used at the suggested Multiple User Authentication System. The user authentication system that this paper suggests has been developed based on SecuROS/FreeBSD with the function of access control added to FreeBSD kernel. It provides both the function to limit accost range to the system to each user and the function to check that when inputting important information the demand is the one if the system ; thus, the reliability becomes increased. In the SecuROS/FreeBSD system, MAC and RBAC are being used. So, in the case of users accessing to the system, the Information about the policies of MAC and RBAC to which users would access is used in the authentication. At the time, the access to system if permitted only when the access control information that users demanded satisfies all the access control rules which have been defined In the system.

Design and Implementation of SDR-based Digital Filter Technique for Multi-Channel Systems (다중채널 시스템을 위한 SDR 기술기반의 디지털 필터 기법 설계 및 구현)

  • Yu, Bong-Guk;Bang, Young-Jo;Ra, Sung-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.494-499
    • /
    • 2008
  • In this study, a Software Defined Radio(SDR) technology-based digital filtering technique applicable to a multiple channel processing system such as a wireless mobile communication system using Code Division Multiple Access(CDMA) technology is proposed. The technique includes a micro-processor to redesign Finite Impulse Response(FIR) filter coefficients according to specific system information and to download the filter coefficients to one digital Band Pass Filter(BPF) to reconfigure another system. The feasibility of the algorithm is verified by implementing a multiple channel signal generator that is reconfigurable to other system profiles, including those for a CDMA system and a WCDMA system on identical hardware platform.

O-CDMA Code Acquisition Algorithm Based on Magnitude and Sign of Correlation Values (상관값의 크기와 부호에 기반한 O-CDMA 부호 획득 알고리즘)

  • Chong, Da-Hae;Yoon, Tae-Ung;Lee, Young-Po;Lee, Young-Yoon;Song, Chong-Han;Park, So-Ryoung;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.649-655
    • /
    • 2009
  • Mean acquisition time (MAT) is the most important performance measure for code acquisition systems, where a shorter MAT implies a better code acquisition performance. Keshavarzian and Salehi proposed the multiple-shift (MS) algorithm for code acquisition in optical code division multiple access (O-CDMA) systems. Performing two steps acquisition, the MS algorithm has a shorter MAT than that of the conventional serial-search (SS) algorithm. In this paper, we propose a rapid code acquisition algorithm for O-CDMA systems. By using an efficient combination of local signals, correlation value, and the sign of correlation value, the proposed algorithm can provide a shorter MAT compared with that of the MS algorithm. The simulation results show that the proposed algorithm presents a shorter MAT than that of the MS algorithm.

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Multiple Access Capability of Digital IoT Doorlock System for Smart Building (스마트빌딩용 디지털 IoT 도어락 시스템의 다중접속 능력)

  • Lee, Sun-Yui;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Yoon, Sung-Hoon;Cha, Jae-Sang;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2018
  • This paper proposes multiple access method for smart doorlock system using VLC(Visible Light Communication) with color grid modulation method. The proposed method is to connect multiple visible light signals using color grid modulation method in order to recognize and authenticate multiple users accessing doorlock. In order to enable visible light multiple access with existing infrastructure, the symbol energy interval of signal should be maximized. Thus, performance of system in VLC channel is measured by modulating symbols based on the proposed method. We confirm the actual channel test results of the modulated signal to implement doorlock system that recognizes the number of multiple access users.

Simultaneous Transmission of Multiple Unicast and Multicast Streams Using Non-orthogonal Multiple Access (비직교 다중접속 방식을 이용한 다중 유니캐스트와 멀티캐스트 스트림 동시 전송)

  • Shin, Changyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this paper, we propose a non-orthogonal multiple access (NOMA) method based on channel alignment to simultaneously transmit multiple unicast and multicast streams in frequency-efficient manner. In this method, all receivers in a multicast cluster use the receive beamforming vectors that align their channels, and the base station uses the aligned channel information to design the transmit beamforming vectors that eliminate interference between multicast clusters. Using the effective receive channel information combined with the transmit beamforming vectors, unicast receivers design their own receive beamforming vectors that eliminate interference between unicast receivers. Since the proposed method effectively eliminates the interference, it achieves a higher sum rate than the existing orthogonal multiple access (OMA) method in high SNR regions. In addition, we present a hybrid method that exploits the benefits of the proposed NOMA method and the existing OMA method. Depending on the channel state, the hybrid method adaptively employs the existing OMA method, which improves the received signal power, in low SNR regions and the proposed NOMA method, which effectively eliminates the interference, in high SNR regions, thereby achieving a good sum rate over the entire SNR region.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.

RawPEACH: Multiband CSMA/CA-Based Cognitive Radio Networks

  • Chong, Jo-Woon;Sung, Young-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • A new medium access control (MAC) scheme embedding physical channels into multiband carrier sense multiple access/collision avoidance (CSMA/CA) networks is proposed to provide strict quality of service (QoS) guarantee to high priority users. In the proposed scheme, two priority classes of users, primary and secondary users, are supported. For primary users physical channels are provided to ensure strict QoS, whereas secondary users are provided with best-effort service using CSMA/CA modified for multiband operation. The performance of the proposed MAC scheme is investigated using a new multiband CSMA/CA Markov chain model capturing the primary user activity and the operation of secondary users in multiple bands. The throughput of secondary users is obtained as a function of the primary user activity and other CSMA/CA parameters. It is shown that the new MAC scheme yields larger throughput than the conventional single-band CSMA/CA when both schemes use the same bandwidth.

Impact of Correlation on Superposition Coding in NOMA for Interactive Mobile Users in 5G System: Achievable Sum Rate Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been more commercialized worldwide. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). We present the achievable sum rate of non-orthogonal multiple access (NOMA) with correlated superposition coding (SC). Then this paper investigates the impacts of correlation on the achievable sum rate of correlated SC NOMA. It is shown that the achievable sum rate of correlated SC NOMA is greater than that of standard independent SC NOMA, for the most of the values of the power allocation factor over the meaningful range of the user fairness. In result, correlated SC could be a promising scheme for NOMA.