• Title/Summary/Keyword: (MC)

Search Result 4,890, Processing Time 0.037 seconds

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

Studies on the Reinforced Effect of Rubber Elastomer by means of Milled Glass Fiber Treated with Silane Coupling Agents (Silane Coupling제(劑) 처리(處理) Glass Fiber에 의(依)한 탄성체(彈性體)의 보강효과(補强效果)에 관(關)한 연구(硏究))

  • Lee, Sang-Hyun;Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.204-212
    • /
    • 1987
  • The purpose of this study is to investigate the reinforced effect between MGF treated silane coupling agents and rubber matrix under the configuration chemical bonds, also the effect of triazine thiol compounds. For this study, vulcanizates were prepared with fifteen different compounding formulas. Their vulcanization characteristics, physical properties were examined by means of the ODR(Oscillating Dist Rheometer), the tensile tester, the benzene swelling test. The results of this study obtained are as follows: 1. In the ODR test, the MA vulcanizate was the fastest one in terms of having reached to optimum cure time($t_{90}$) and, with the same formula, when MGF vulcanizates, the shortest optimum cure times has appeared. 2. The SA, SC vulcanizates were the best the other in the physical properties such as 100%modulus, 200%modulus, 300%modulus, tensile strength. The SB vulcanizate, with higher density of crosslinking than other vulcanizates. The vulcanizates, which were filled with MGF treated with silane coupling agents we were the higher density of crosslinking than vulcanizates filled with MGF only. 3. In aging properties, the silica vulcanizates appeared to be better than the other vulcanizates. The aging Properties of treated MGF vulcanizates were similar to the silica vulcanizates. The(CR+APS+silica) and(CR+APS+MCF) were easily crosslinked by exposure to the air, and the physical properties have been improved.

  • PDF

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Diagnostic Performance of Digital Breast Tomosynthesis with the Two-Dimensional Synthesized Mammogram for Suspicious Breast Microcalcifications Compared to Full-Field Digital Mammography in Stereotactic Breast Biopsy (정위적 유방 조직검사 시 미세석회화 의심 병변에서의 디지털 유방단층영상합성법과 전역 디지털 유방촬영술의 진단능 비교)

  • Jiwon Shin;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1090-1103
    • /
    • 2022
  • Purpose To evaluate the diagnostic performance of digital breast tomosynthesis (DBT) with the two-dimensional synthesized mammogram (2DSM), compared to full-field digital mammography (FFDM), for suspicious microcalcifications in the breast ahead of stereotactic biopsy and to assess the diagnostic image visibility of the images. Materials and Methods This retrospective study involved 189 patients with microcalcifications, which were histopathologically verified by stereotactic breast biopsy, who underwent DBT with 2DSM and FFDM between January 8, 2015, and January 20, 2020. Two radiologists assessed all cases of microcalcifications based on Breast Imaging Reporting and Data System (BI-RADS) independently. They were blinded to the histopathologic outcome and additionally evaluated lesion visibility using a fivepoint scoring scale. Results Overall, the inter-observer agreement was excellent (0.9559). Under the setting of category 4A as negative due to the low possibility of malignancy and to avoid the dilution of malignancy criteria in our study, McNemar tests confirmed no significant difference between the performances of the two modalities in detecting microcalcifications with a high potential for malignancy (4B, 4C, or 5; p = 0.1573); however, the tests showed a significant difference between their performances in detecting microcalcifications with a high potential for benignancy (4A; p = 0.0009). DBT with 2DSM demonstrated superior visibility and diagnostic performance than FFDM in dense breasts. Conclusion DBT with 2DSM is superior to FFDM in terms of total diagnostic accuracy and lesion visibility for benign microcalcifications in dense breasts. This study suggests a promising role for DBT with 2DSM as an accommodating tool for stereotactic biopsy in female with dense breasts and suspicious breast microcalcifications.

Survival Value of Myocutaneous Flaps in the Management of Epidermoid Carcioma of the Oral Cavity (구강내 상피암의 치료에서 근피부판이 생존율에 미치는 영향)

  • Seel David John;Park Chul-Young;Yoo Chung-Joon;Lee Samuel;Park Yoon-Kyu
    • Korean Journal of Head & Neck Oncology
    • /
    • v.6 no.2
    • /
    • pp.79-84
    • /
    • 1990
  • This paper is a review of our experience with radical resection for cancer of the oral cavity with particular emphasis upon the value of myocutaneous(i.e., musculocutanous) flaps employed in the surgical reconstruction in patient survival. During the past 15 years, 98 patients underwent resection of cancer arising in the oral cavity and oropharynx. Of these, 14 had composite resections in which the mandible was not sectioned, and 4 underwent en bloc resections without neck dissections in the face of post-radiation recurrence. When these excluded, 84 patients who underwent COMMANDO procedures with or without myocutaneous flaps were suitable for analysis of recurrence and survival according to the various surgical technics employed. 1) According to the surgical technic, there were 24 standard COMMANDO procedures in whom no regional or myocutanous flap was used; 12 patients who underwent reconstruction employing a forehead flap; 19 patients in whom a posterior cervical 'nape' flap was employed; 27 patients who underwent myocutaneous or osteo-myocutaneous flap repair; and two patients who had double flap repair. 2) The uncorrected two-year disease free survival was 41% for standard COMMANDOs, 17% for forehead flap COMMANDOs; 35% for nape flap COMMANDOs; and 35% for myocutaneous flap COMMANDO procedures. 3) The two-year disease-free survival by Stage was 100% in Stage I, 45% in Stage II, 41% in Stage III, and 18% in Stage IV. 4) When myocutanous flaps cases were compared with Group I, comprised of matched historical controls including both Standard COMMANDOs and those who had undergone regional flap repairs(that is, forehead and nape flap COMMANDOs)there was no difference, both groups showing a 40% 2-year disease-free survival. 5) When musculocutanous flap cases were compared with Goup II, which was composed of matched historical controis limited to patients who had undergone regional flap repairs(that is, forehead and nape flap cases only)there was no difference, both groups showing a 27% 2-year desease-free survival. 6) When musculocutanous flap cases were compared with Group III, composed of patients who had undergone classic COMMANDO procedures without any sort of flap repair, there was a striking difference; the patients undergoing MC flap repair showed 50% 2-year disease-free survival, whereas the classic COMMANDO cases showed a 25% survival free of disease. 7) Locoregional recurrence was also evaluated in the four categories; for standard COMMANDO cases it was 25%, for nape flap cases 26% ; for forehead flap cases, 33%, and for the musculocutaneous flap cases, the lowest recurrence rate, 22%. These results are of particular significance in view of the fact that the proportion of advanced cases(Stage III and IV)in each category was 67% of standard cases, 79% of nape flap patients, 100% of forehead flap cases, and 96% of musculocutaneous flap cases.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Organizational Buying Behavior in an Interdependent World (상호의존세계중적조직구매행위(相互依存世界中的组织购买行为))

  • Wind, Yoram;Thomas, Robert J.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.110-122
    • /
    • 2010
  • The emergence of the field of organizational buying behavior in the mid-1960’s with the publication of Industrial Buying and Creative Marketing (1967) set the stage for a new paradigm of thinking about how business was conducted in markets other than those serving ultimate consumers. Whether it is "industrial marketing" or "business-to-business marketing" (B-to-B), organizational buying behavior remains the core differentiating characteristic of this domain of marketing. This paper explores the impact of several dynamic factors that have influenced how organizations relate to one another in a rapidly increasing interdependence, which in turn can impact organizational buying behavior. The paper also raises the question of whether or not the major conceptual models of organizational buying behavior in an interdependent world are still relevant to guide research and managerial thinking, in this dynamic business environment. The paper is structured to explore three questions related to organizational interdependencies: 1. What are the factors and trends driving the emergence of organizational interdependencies? 2. Will the major conceptual models of organizational buying behavior that have developed over the past half century be applicable in a world of interdependent organizations? 3. What are the implications of organizational interdependencies on the research and practice of organizational buying behavior? Consideration of the factors and trends driving organizational interdependencies revealed five critical drivers in the relationships among organizations that can impact their purchasing behavior: Accelerating Globalization, Flattening Networks of Organizations, Disrupting Value Chains, Intensifying Government Involvement, and Continuously Fragmenting Customer Needs. These five interlinked drivers of interdependency and their underlying technological advances can alter the relationships within and among organizations that buy products and services to remain competitive in their markets. Viewed in the context of a customer driven marketing strategy, these forces affect three levels of strategy development: (1) evolving customer needs, (2) the resulting product/service/solution offerings to meet these needs, and (3) the organization competencies and processes required to develop and implement the offerings to meet needs. The five drivers of interdependency among organizations do not necessarily operate independently in their impact on how organizations buy. They can interact with each other and become even more potent in their impact on organizational buying behavior. For example, accelerating globalization may influence the emergence of additional networks that further disrupt traditional value chain relationships, thereby changing how organizations purchase products and services. Increased government involvement in business operations in one country may increase costs of doing business and therefore drive firms to seek low cost sources in emerging markets in other countries. This can reduce employment opportunitiesn one country and increase them in another, further accelerating the pace of globalization. The second major question in the paper is what impact these drivers of interdependencies have had on the core conceptual models of organizational buying behavior. Consider the three enduring conceptual models developed in the Industrial Buying and Creative Marketing and Organizational Buying Behavior books: the organizational buying process, the buying center, and the buying situation. A review of these core models of organizational buying behavior, as originally conceptualized, shows they are still valid and not likely to change with the increasingly intense drivers of interdependency among organizations. What will change however is the way in which buyers and sellers interact under conditions of interdependency. For example, increased interdependencies can lead to increased opportunities for collaboration as well as conflict between buying and selling organizations, thereby changing aspects of the buying process. In addition, the importance of communication processes between and among organizations will increase as the role of trust becomes an important criterion for a successful buying relationship. The third question in the paper explored consequences and implications of these interdependencies on organizational buying behavior for practice and research. The following are considered in the paper: the need to increase understanding of network influences on organizational buying behavior, the need to increase understanding of the role of trust and value among organizational participants, the need to improve understanding of how to manage organizational buying in networked environments, the need to increase understanding of customer needs in the value network, and the need to increase understanding of the impact of emerging new business models on organizational buying behavior. In many ways, these needs deriving from increased organizational interdependencies are an extension of the conceptual tradition in organizational buying behavior. In 1977, Nicosia and Wind suggested a focus on inter-organizational over intra-organizational perspectives, a trend that has received considerable momentum since the 1990's. Likewise for managers to survive in an increasingly interdependent world, they will need to better understand the complexities of how organizations relate to one another. The transition from an inter-organizational to an interdependent perspective has begun, and must continue so as to develop an improved understanding of these important relationships. A shift to such an interdependent network perspective may require many academicians and practitioners to fundamentally challenge and change the mental models underlying their business and organizational buying behavior models. The focus can no longer be only on the dyadic relations of the buying organization and the selling organization but should involve all the related members of the network, including the network of customers, developers, and other suppliers and intermediaries. Consider for example the numerous partner networks initiated by SAP which involves over 9000 companies and over a million participants. This evolving, complex, and uncertain reality of interdependencies and dynamic networks requires reconsideration of how purchase decisions are made; as a result they should be the focus of the next phase of research and theory building among academics and the focus of practical models and experiments undertaken by practitioners. The hope is that such research will take place, not in the isolation of the ivory tower, nor in the confines of the business world, but rather, by increased collaboration of academics and practitioners. In conclusion, the consideration of increased interdependence among organizations revealed the continued relevance of the fundamental models of organizational buying behavior. However to increase the value of these models in an interdependent world, academics and practitioners should improve their understanding of (1) network influences, (2) how to better manage these influences, (3) the role of trust and value among organizational participants, (4) the evolution of customer needs in the value network, and (5) the impact of emerging new business models on organizational buying behavior. To accomplish this, greater collaboration between industry and academia is needed to advance our understanding of organizational buying behavior in an interdependent world.