• Title/Summary/Keyword: (GC-MS) gas chromatography-mass spectrometry analysis

Search Result 359, Processing Time 0.023 seconds

Comparison Analysis of Essential Oils Composition in Difference Parts from Lindera obtusiloba BL. according to the Season by Gas Chromatography-Mass Spectrometry (GC-MS) (GC-MS를 이용한 계절에 따른 생강나무(Lindera obtusiloba BL.)의 부위별 향기 성분 비교 분석)

  • Hwang, Seung Hwan;Choi, Se Jin;Hwang, Young Sun;Lim, Soon Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.1
    • /
    • pp.30-40
    • /
    • 2013
  • The essential oils of stems, roots, fruits and leaves of Lindera obtusiloba BL. were collected in the winter and summer extracted by simultaneous distillation extraction (SDE) apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). In present study, 58 kinds of volatile components in the winter stems (WS), 70 in the winter roots (WR), 77 in the summer stems (SS), 78 in the summer roots (SR), 70 in the summer fruits (SF) and 76 in the summer leaves (SL) were identified. The results showed that, the major components were monoterpenes including ${\alpha}$-thujene (1.22~13.80%) camphene (1.56~18.40%), ${\beta}$-mycrene (1.75~9.27%), limonene (5.57~12.83%), ${\beta}$-phellandrene (3.03~7.72%), linalyl acetate (2.29~12.55%), dihydromycrene (0~11.15%), germacrene B (0~7.54%) of which the contents had major fluctuations in different seasons and parts. In general, monoterpenes were the major constituent of SF in L. obtusiloba BL. that have presented possibilities for industrial applications.

Mass Spectrometry-Based Metabolite Profiling and Bacterial Diversity Characterization of Korean Traditional Meju During Fermentation

  • Lee, Su Yun;Kim, Hyang Yeon;Lee, Sarah;Lee, Jung Min;Muthaiya, Maria John;Kim, Beom Seok;Oh, Ji Young;Song, Chi Kwang;Jeon, Eun Jung;Ryu, Hyung Seok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1523-1531
    • /
    • 2012
  • The metabolite profile of meju during fermentation was analyzed using mass spectrometry techniques, including GC-MS and LC-MS, and the bacterial diversity was characterized. The relative proportions of bacterial strains indicated that lactic acid bacteria, such as Enterococcus faecium and Leuconostoc lactis, were the dominant species. In partial least-squares discriminate analysis (PLS-DA), the componential changes, which depended on fermentation, proceeded gradually in both the GC-MS and LC-MS data sets. During fermentation, lactic acid, amino acids, monosaccharides, sugar alcohols, and isoflavonoid aglycones (daidzein and genistein) increased, whereas citric acid, glucosides, and disaccharides decreased. MS-based metabolite profiling and bacterial diversity characterization of meju demonstrated the changes in metabolites according to the fermentation period and provided a better understanding of the correlation between metabolites and bacterial diversity.

Headspace GC-MS Analysis of Spring Blossom Fragrance at Chungnam National University Daedeok Campus

  • Choi, Yeonwoo;Lee, Sanghyun;Kim, Young-Mi;Nguyen, Huu-Quang;Kim, Jeongkwon;Lee, Jaebeom
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.125-132
    • /
    • 2022
  • There are many types of spring blossoms on the Daedeok campus of Chungnam National University (CNU) at the area of 1,600,000 square meters. As an assignment for the class of Analytical Chemistry I for second-year undergraduate students, 2021, flower petals collected from various floral groups (Korean azalea, Korean forsythia, Dilatata lilac, Lilytree, Lily magnolia, and Prunus yedoensis) were analyzed using headspace extraction coupled to gas chromatography-mass spectrometry (HS-GC-MS) to study the aromatic profiles and fragrance compounds of each sample group. Various types of compounds associated with the aroma profiles were detected, including saturated alcohols and aldehydes (ethanol, 1-hexanol, and nonanal), terpenes (limonene, pinene, and ocimene), and aromatic compounds (benzyl alcohol, benzaldehyde). The different contribution of these compounds for each floral type was visualized using statistical tools and classification models based on principal component analysis with high reliability (R2 = 0.824, Q2 = 0.616). These results showed that HS-GC-MS with statistical analysis is a powerful method to characterize the volatile aromatic profile of biological specimens.

Determination of N-nitrosamines in Water by Gas Chromatography Coupled with Electron Impact Ionization Tandem Mass Spectrometry (EI-GC/MS/MS를 이용한 니트로사민류의 수질분석)

  • Lee, Ki-Chang;Park, Jae-Hyung;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.764-770
    • /
    • 2014
  • This study assessed analysis of N-nitrosamines by separation, identification, and quantification using a gas chromatography (GC) mass spectrometer (MS) with electron impact (EI) mode. Samples were pretreated by a automated solid phase extraction (SPE) and a nitrogen concentration technique to detect low concentration ranges. The analysis results by EI-GC/MS (SIM) and EI-GC/MS/MS (MRM) on standard samples with no pretreatment exhibited similar results. On the other hand, the analysis of pretreated samples at low concentrations (i.e. ng/L levels) were not reliable with a EI-GC/MS due to the interferences from impurity peaks. The method detection limits of eight (8) N-nitrosamines by EI-GC/MS/MS analysis ranged from 0.76 to 2.09 ng/L, and the limits of quantification ranged from 2.41 to 6.65 ng/L. The precision and accuracy of the method were evaluated using spiked samples at concentrations of 10, 20 and 100 ng/L. The precision were 1.2~13.6%, and the accuracy were 80.4~121.8%. The $R^2$ of the calibration curves were greater than 0.999. The recovery rates for various environmental samples were evaluated with a surrogate material (NDPA-$d_{14}$) and ranged 86.2~122.3%. Thus, this method can be used to determine low (ng/L) levels of N-nitrosamines in water samples.

Determination of 11 Phenolic Endocrine Disruptors using Gas Chromatography/Mass Spectrometry-Selected Ion Monitoring in Five Selected Wastewater Influents

  • Kim, Hyub
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.216-223
    • /
    • 2008
  • An efficient method for the simultaneous determination of eleven phenolic endocrine-disrupting chemicals (EDCs) present in wastewater influent samples was described. The 11 phenolic EDCs including alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) following two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. The wastewater influent samples containing the 11 EDCs were adjusted to pH 2 with $H_2SO_4$ and then cleaned up with n-hexane. Next, they were subjected to solid-phase extraction (SPE) with XAD-4 resin and subsequently converted to isoBOC or TBDMS derivatives for sensitivity analysis with gas chromatography/mass spectrometry-selected ion monitoring (GC/MSSIM). Following isoBOC derivatization and TBDMS derivatization, the recoveries were 86.6-105.2% and 97.6-142.7%, the limits of quantitation (LOQ) for the 11 phenolic EDCs for SIM was 0.001-0.050 ng/mL and 0.003-0.050 ng/mL, and the SIM responses were linear with the correlation coefficient varying by 0.9717-0.9995 and 0.9842-0.9980, respectively. When these methods were applied to five selected wastewater influent samples, for isoBOC derivatization and TBDMS derivatization the ranges of concentration detected were 0.2-99.6 ng/mL and 0.4-147.4 ng/mL, respectively.

Analysis of UV Filters in Water using Stir Bar Sorptive Extraction (SBSE) and GC/MS-MS (교반막대 추출법과 GC/MS-MS를 이용한 수중의 자외선 차단제 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1037-1047
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC/MS-MS) has been developed, allowing the simultaneous multi-analyte determination of seven UV filters in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 12.9%). The extraction efficiencies were above 84% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~8.6 ng/L and 6.8~27.5 ng/L, respectively. The developed method offers the ability to detect 8 UV filters at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 7 UV filters except of benzophenone (BP). The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Analysis of Agrochemical Residues in Tobacco Using QuEChERS Method by GC-MS/MS

  • Lee, Jeong-Min;Jang, Gi-Chul;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • This study was performed to apply the more rapid and accurate sample preparation, and the high selectivity and sensitivity of the analyte detection by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). QuEChERS (quick, easy, cheap, effective, rugged and safe) method was validated for 49 agrochemicals in the CORESTA Agrochemical Advisory Committee guide and amenable to GC-MS/MS determination. In QuEChERS method, the effects of sorbents (PSA, $C_{18}$ and GCB) and matrix of the analytes in tobacco types (flue-cured, burley and oriental) were investigated. MS/MS acquisition provided high specificity and selectivity for agrochemicals and low limit of quantification. QuEChERS by using PSA alone and the matrix-matched standards gave good recoveries and RSD values in three types of tobaccos. QuEChERS method was no needed to be complex clean-up procedure and would be used as the fast and easy method for agrochemical residue analysis in tobacco.

Application of a Gas Chromatography/Mass Spectrometric Method for the Determination of Butyltin Compounds in Sediment

  • Won, Yong-Il;Jung, Pyong-Gil;Chung, Min-Young;Kim, Byung-Joo;Yim, Yong-Heon;So, Hun-Young;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1508-1512
    • /
    • 2004
  • A gas chromatography/mass spectrometric (GC/MS) method has been developed for the determination of trace mono-n-butyltin (MBT), di-n-butyltin (DBT), and tri-n-butyltin (TBT) compounds in sediments. Samples were extracted by 10% acetic acid in methanol containing 0.03% tropolone and were then derivatized for GC/MS analysis. Ethylation by sodium tetraethylborate and phenylation by sodium tetraphenylborate were evaluated as a derivatization reaction of the organotins in sample extract. n-Hexane was added into reaction media in the beginning of the reaction for the continuous extraction of derivatized organotins. Ethylation requires less than 2 hours to get proper derivatization yields for MBT, DBT, and TBT altogether and produces relatively low amounts of side reaction products. Compared to ethylation, phenylation requires much longer time but provides relatively lower yield and produces considerable amounts of side reaction products. Therefore, the ethylation reaction was applied for the analysis of organotin compounds in sediment. An isotope dilution mass spectrometric (IDMS) method based on GC/MS has been applied to the accurate determination of DBT compounds in the sediments. The IDMS results from the analyses of sediment samples showed a reasonable repeatability and a good agreement with the values obtained by IDMS based on liquid chromatography/induced coupled plasma/mass spectrometry.

Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)

  • Shin, Min-Chul;Kwon, Young Sang;Kim, Jong-Hwan;Hwang, Kyunghwa;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.88-95
    • /
    • 2019
  • This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFB-Br) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was $10{\mu}M$. The linear dynamic range was from 10 to $200{\mu}M$ for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.