• 제목/요약/키워드: (E)-2-Phenylcyclopropylamine

검색결과 3건 처리시간 0.014초

1-Methyl Substituent and Stereochemical Effects of 2-Phenylcyclopropylamines on the Inhibition of Rat Brain Mitochondrial Monoamine Oxidase A and B

  • Kang, Gun-Il;Hong, Suk-Kil;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • 제10권1호
    • /
    • pp.50-59
    • /
    • 1987
  • (E)-2-Phenylcyclopropylamine ((E)-TCP), (Z)-2-Phenylacyclopropylamine ((Z)-TCP), (E)-1-methyl-2-phenylcyclopropylamine ((E)-MTCP), and (Z)-1-methyl-2-phenylcyclopropylamine ((Z)-MTCP) were synthesized and used to determine to what extent 1-methylsubstitution and stereochemistry of 2-phenycyclopropylamines affect inhibition of monoamine oxidase (MAO). Inhibition of rat brain mitochondrial MAO-A and B by the compounds were measured using serotonin and benzylamine as the substrate, respectively and $IC_{50}$ values obtianed with 95% confidence limits by the method of computation. For the inhibition of MAO-A, (E)-MTPC ($IC_{50}$ = 6.2 * $10^{-8}$M) was found to be 37 times more potent than (Z)-MTCP ($IC_{50}$ = 7.8 * $10^{-8}$M), was 7 times more potent than (Z)-MTCP($IC_{50}$= 4.7 * $10^{-7}$M) and (E)-TCP($IC_{50}$ =7.8 * $10^{-8}$M),0.6 times as potent as (Z)- TCP ($IC_{50}$ = 4.4 * $10^{-8}$M). The results suggested that while without 1-methyl group, potency of a (Z)-isomer was comparable to that of (E)-isomer, the methyl group in its (Z)-position was very unfavorable to the inhibition of MAO and that in its (E)-position, the methyl group contributed positively to the potency as found by the fact that (E)-MTCP was 1-5 times more potent than (E)-TCP. In view of the selective inhibition of MAO-A- or B over MAO-A and 1-methyl substitution as well as the stereochemical factors did not significantly influence the selectivity.

  • PDF

Tranylcypromine 광학이성질체에 의한 MAO 자살억제의 반응속도론 (Suicidal Inhibition Kinetics of MAO by Tranylcypromine Enantiomers)

  • 강건일;최명희
    • 약학회지
    • /
    • 제33권1호
    • /
    • pp.64-71
    • /
    • 1989
  • Since time-dependent inactivation of MAO was found to be complete in a few minutes when high concentration ratios of tranylcypromine to MAO were used, a method to obtain kinetic parameters was sought suitable to the conditions in which concentrations of tranylcypromine analogs did not exceed that of MAO. For the purpose, kinetic equations were derived and the method applied to the kinetic studies of tranylcypromine enantiomers. It was found that (E)-(+)-2-phenylcyclopropylamine inhibited MAO by the mechanism following bimolecular reaction scheme with $\tilde{K}_i$ of $2.0\;{\times}\;10^6M^{-1}min^{-1}$. Whereas, MAO-inhibitory pattern of the (-)-enantiomer was to be interpreted by suicide inhibition scheme and measured $k_{in}\;and\;\tilde{K}'$ were $0.457\;min^{-1}\;and\;$5.4{\mu}M$, respectively.

  • PDF

Quantitative Structure-Activity Relationships in MAO-Inhibitor~' 2-Phenylcyclopropylarnines: Insights into the Topography of MAO-A and MAO-B

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • 제13권1호
    • /
    • pp.82-96
    • /
    • 1990
  • Ten (E)-and (Z)-isomers of 2-phenylcyclopropylamine (PCA), 1-Me PCA, 2-Me-PCA, N-Me-PCA, and N, N-diMe PCA and fifteen o-. m-, p- isomers of (E) PCA with substituents of Me, Cl, F, OMe, OH were synthesized in this laboratory and tested for the inhibition of rat brain mitochondrial MAO-A and MAO-B. The effects of substituents, their positions, and stereochemistry on the inhibition were assessed for the compounds with substituents at cyclopropyl and amino groups and QSAR analyses were performed using the potency data of ring-substituted compounds. The best correlated QSAR equations are as follows : pI$_{50}$ = 0.804 $\pi^2$-0.834 Blo-1.069 Blm + 0.334 Lp-1.709 HDp +7.897 (r = 0.945, s =0.211, F = 16.691, p = 0.000) for the inhibition of MAO-A;PI$_{50}$= 1.815$\pi$-0.825 $\pi^2$-1.203R + 0.900 Es$^2$ + 0.869 Es$^3$ + 0.796 Es$^4$-0.992 HDp + 0.562 HAo + 3.893 (r = 0.982, s =0.178, F = 23.351, p = 0.000) for the inhibition of MAO-B. Based on the potency difference between stereoisomers of cyclopropylamine-modified compounds and an QSAR cavity near para position, two hydrophobic carities interacting with Me group, a hydrophobic site near para position, and an amino group binding site and that in addition to the same two hydrophotic cavities, hydrophotic area, steric boundaries, hydrogen-acceptor site, and amino group binding site, another steric boundary near para position and a hydrogen donating site near ortho position constitute active sites of MAO-B.

  • PDF